Skip to main content

Astronomers spot two black holes colliding in epic merger

Astronomers have spotted a pair of black holes that are heading for an epic collision. One is a supermassive black hole, the enormous type of black hole which is found at the center of most galaxies, and the other is a smaller companion that is orbiting around its partner and spiraling closer in. Eventually, the two will merge, and studying them now could give clues about how supermassive black holes come to be.

Researchers aren’t sure exactly how supermassive black holes, which are millions or even billions of times the mass of the sun, are created. They think that they might form from the merging of two smaller supermassive black holes, but it’s very rare to spot such a pair, so this new discovery could shine a light on this process.

Illustration demonstrating how light from a smaller black hole (left) curves around a larger black hole and forms an almost-mirror image on the other side.
In this illustration, light from a smaller black hole (left) curves around a larger black hole and forms an almost-mirror image on the other side. The gravity of a black hole can warp the fabric of space itself, such that light passing close to the black hole will follow a curved path around it. Caltech-IPAC

The pair were spotted by a team of astronomers led by Sandra O’Neill from Caltech. The team observed the pair in a galaxy called PKS 2131-021 using radio telescopes on Earth which can see jets that are ejected from black holes’ event horizons when hot gas hits them. These jets are so powerful they can be detected from Earth, especially if the jets are pointed toward us, forming what is called a blazar.

Recommended Videos

The team looked at observations of the blazar stretching back over 45 years to identify the pair. They found variations in the brightness of the blazar which fitted a very distinct pattern. “When we realized that the peaks and troughs of the light curve detected from recent times matched the peaks and troughs observed between 1975 and 1983, we knew something very special was going on,” said O’Neill in a statement.

By comparing observations from five different observatories dating back to 1975, the researchers were able to confirm the variations were due to a second black hole tugging on the orbit of the supermassive black hole, as the two orbit each other approximately every two years.

“This work is a testament to the importance of perseverance,” said co-author Joseph Lazio of NASA’s Jet Propulsion Laboratory in a statement. “It took 45 years of radio observations to produce this result. Small teams, at different observatories across the country, took data week in and week out, month in and month out, to make this possible.”

The research is published in The Astrophysical Journal Letters.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Event Horizon Telescope can now take images of black holes that are 50% sharper
Illustration of the highest-resolution detections ever made from the surface of Earth

The Event Horizon Telescope project, the group that took the first-ever image of a black hole, has made another historic breakthrough, making the highest-ever resolution observations of space taken from the Earth's surface. The project uses facilities around the globe to turn the Earth itself into a giant observatory, which is capable of taking highly precise measurements of distant galaxies.

The latest observations made use of the Atacama Large Millimeter/submillimeter Array (ALMA), a large array of radio telescopes located in Chile, as well as other facilities in Spain, France, and Hawaii. To get higher-resolution images than previous observations, scientists weren't able to make the telescope bigger -- as it was already the size of the Earth -- so they observed at a higher frequency instead.

Read more
Hubble finds mysterious and elusive black hole
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole.

An international team of astronomers has used more than 500 images from the NASA/European Space Agency (ESA) Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence of the presence of an intermediate-mass black hole. ESA/Hubble & NASA, M. Häberle (MPIA)

There's something strange about black holes. Astronomers often find small black holes, which are between five times and 100 times the mass of the sun. And they often find huge supermassive black holes, which are hundreds of thousands of times the mass of the sun or even larger. But they almost never find black holes in between those two sizes.

Read more
NASA 360-degree video shows what it’s like to plunge into a black hole
A black hole according to NASA's 360-degree video.

360 Video: NASA Simulation Shows a Flight Around a Black Hole

If you were having a bad day, plunging into a black hole would be enough to really top it off. Apparently, you’d experience a process known as “spaghettification” in which the black hole’s enormous gravitational force would compress your entire body while stretching it out at the same time, leaving you a bit noodle-like. Falling into a supermassive black hole would be a slightly less horrendous experience, apparently.

Read more