Skip to main content

New James Webb data shows that the crisis in cosmology persists

Something very strange is up with cosmology. In the last few decades, one big question has created a crisis in the field: How fast is the universe expanding? We know that the universe has been expanding since the Big Bang, but the exact rate of this expansion is still not known for certain. The problem is that the rate of expansion seems to be different depending on what factors are used to measure it, and no one is sure why.

Recently, new research using the James Webb Space Telescope has made it clear that this problem isn’t going away any time soon. Webb has refined previous measurements of the expansion rate made using data from the Hubble Space Telescope, and the glaring inconsistency is still there.

The rate of the expansion of the universe is known as the Hubble constant, and there are two main ways in which it is measured. The first way is by looking at distant galaxies, and working out how far away they are by looking at particular types of stars that have predictable levels of brightness. This tells you how long the light has been traveling from that galaxy. Then researchers look at the redshift of that galaxy, which shows how much expansion has occurred during this time. This is the method of measuring the Hubble constant used by space telescopes like Hubble and Webb.

The other method is to look at the leftover radiation from the Big Bang, called the cosmic microwave background. By looking at this energy and how it varies across the universe, researchers can model the conditions that must have created it. That lets you see how the universe must have expanded over time.

The problem is, these two methods disagree on the final figure for the Hubble constant. And as measurement techniques get more and more accurate, the difference isn’t going away.

Combined observations from NASA’s NIRCam (Near-Infrared Camera) and Hubble’s WFC3 (Wide Field Camera 3) show spiral galaxy NGC 5584, which resides 72 million light-years away from Earth. Among NGC 5584’s glowing stars are pulsating stars called Cepheid variables and Type Ia supernova, a special class of exploding stars. Astronomers use Cepheid variables and Type Ia supernovae as reliable distance markers to measure the universe’s expansion rate.
Combined observations from NASA’s NIRCam (Near-Infrared Camera) and Hubble’s WFC3 (Wide Field Camera 3) show spiral galaxy NGC 5584, which resides 72 million light-years away from Earth. Among NGC 5584’s glowing stars are pulsating stars called Cepheid variables and Type Ia supernova, a special class of exploding stars. Astronomers use Cepheid variables and Type Ia supernovae as reliable distance markers to measure the universe’s expansion rate. Image: NASA, ESA, CSA, Adam G. Riess (JHU, STScI); Image Processing: Alyssa Pagan (STScI)

The recent research used Webb to investigate the particular stars used for calculating distance, called Cepheid variables. Researchers looked at the galaxy NGC 5584 to see if the measurements Hubble took of these stars really were accurate — if they aren’t, that could explain the discrepancy in the estimates of the Hubble constant.

The researchers took previous Hubble measurements of the stars and pointed Webb at the same stars, to see if there were important differences in the data. Hubble was designed to look primarily in the visible light wavelength, but the stars had to be observed in the near-infrared because of the dust in the way, so the thought was that perhaps Hubble’s infrared vision was just not crisp enough to see the stars accurately.

However, that explanation wasn’t to be. Webb, which operates in the infrared, looked at more than 300 Cepheid variables, and the researchers found that the Hubble measurements were correct. They could even pinpoint the light from these stars even more accurately.

So to our best knowledge, the discrepancy in the Hubble constant is still there, and still causing a problem. There are all sorts of theories for why this could be, from theories about dark matter to flaws in our theories of gravity. For now, the question remains firmly open.

The research has been accepted for publication in The Astrophysical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more