Skip to main content

New James Webb data shows that the crisis in cosmology persists

Something very strange is up with cosmology. In the last few decades, one big question has created a crisis in the field: How fast is the universe expanding? We know that the universe has been expanding since the Big Bang, but the exact rate of this expansion is still not known for certain. The problem is that the rate of expansion seems to be different depending on what factors are used to measure it, and no one is sure why.

Recently, new research using the James Webb Space Telescope has made it clear that this problem isn’t going away any time soon. Webb has refined previous measurements of the expansion rate made using data from the Hubble Space Telescope, and the glaring inconsistency is still there.

The rate of the expansion of the universe is known as the Hubble constant, and there are two main ways in which it is measured. The first way is by looking at distant galaxies, and working out how far away they are by looking at particular types of stars that have predictable levels of brightness. This tells you how long the light has been traveling from that galaxy. Then researchers look at the redshift of that galaxy, which shows how much expansion has occurred during this time. This is the method of measuring the Hubble constant used by space telescopes like Hubble and Webb.

The other method is to look at the leftover radiation from the Big Bang, called the cosmic microwave background. By looking at this energy and how it varies across the universe, researchers can model the conditions that must have created it. That lets you see how the universe must have expanded over time.

The problem is, these two methods disagree on the final figure for the Hubble constant. And as measurement techniques get more and more accurate, the difference isn’t going away.

Combined observations from NASA’s NIRCam (Near-Infrared Camera) and Hubble’s WFC3 (Wide Field Camera 3) show spiral galaxy NGC 5584, which resides 72 million light-years away from Earth. Among NGC 5584’s glowing stars are pulsating stars called Cepheid variables and Type Ia supernova, a special class of exploding stars. Astronomers use Cepheid variables and Type Ia supernovae as reliable distance markers to measure the universe’s expansion rate.
Combined observations from NASA’s NIRCam (Near-Infrared Camera) and Hubble’s WFC3 (Wide Field Camera 3) show spiral galaxy NGC 5584, which resides 72 million light-years away from Earth. Among NGC 5584’s glowing stars are pulsating stars called Cepheid variables and Type Ia supernova, a special class of exploding stars. Astronomers use Cepheid variables and Type Ia supernovae as reliable distance markers to measure the universe’s expansion rate. Image: NASA, ESA, CSA, Adam G. Riess (JHU, STScI); Image Processing: Alyssa Pagan (STScI)

The recent research used Webb to investigate the particular stars used for calculating distance, called Cepheid variables. Researchers looked at the galaxy NGC 5584 to see if the measurements Hubble took of these stars really were accurate — if they aren’t, that could explain the discrepancy in the estimates of the Hubble constant.

The researchers took previous Hubble measurements of the stars and pointed Webb at the same stars, to see if there were important differences in the data. Hubble was designed to look primarily in the visible light wavelength, but the stars had to be observed in the near-infrared because of the dust in the way, so the thought was that perhaps Hubble’s infrared vision was just not crisp enough to see the stars accurately.

However, that explanation wasn’t to be. Webb, which operates in the infrared, looked at more than 300 Cepheid variables, and the researchers found that the Hubble measurements were correct. They could even pinpoint the light from these stars even more accurately.

So to our best knowledge, the discrepancy in the Hubble constant is still there, and still causing a problem. There are all sorts of theories for why this could be, from theories about dark matter to flaws in our theories of gravity. For now, the question remains firmly open.

The research has been accepted for publication in The Astrophysical Journal.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more
James Webb observes extremely hot exoplanet with 5,000 mph winds
This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. WASP-43 b is a Jupiter-sized planet circling a star roughly 280 light-years away, in the constellation Sextans. The planet orbits at a distance of about 1.3 million miles (0.014 astronomical units, or AU), completing one circuit in about 19.5 hours. Because it is so close to its star, WASP-43 b is probably tidally locked: its rotation rate and orbital period are the same, such that one side faces the star at all times.

Astronomers using the James Webb Space Telescope have modeled the weather on a distant exoplanet, revealing winds whipping around the planet at speeds of 5,000 miles per hour.

Researchers looked at exoplanet WASP-43 b, located 280 light-years away. It is a type of exoplanet called a hot Jupiter that is a similar size and mass to Jupiter, but orbits much closer to its star at just 1.3 million miles away, far closer than Mercury is to the sun. It is so close to its star that gravity holds it in place, with one side always facing the star and the other always facing out into space, so that one side (called the dayside) is burning hot and the other side (called the nightside) is much cooler. This temperature difference creates epic winds that whip around the planet's equator.

Read more
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more