Skip to main content

James Webb uses spectroscopy to identify earliest galaxies to date

The James Webb Space Telescope was designed to, among other things, look back in history to search out some of the earliest galaxies ever to exist. Now, new research has provided confirmation that Webb identified some of the oldest galaxies yet, estimated to be 13.4 billion years old.

This is early-release research, meaning it has not yet been peer reviewed, but it gives an indication of what kinds of discoveries are possible with Webb. The data comes from a survey called the JWST Advanced Deep Extragalactic Survey (JADES), an international collaboration using Webb’s instruments to observe the same area of the sky that Hubble previously imaged in its famous Ultra Deep Field.

A region of study by the JWST Advanced Deep Extragalactic Survey (JADES).
This image taken by the James Webb Space Telescope highlights the region of study by the JWST Advanced Deep Extragalactic Survey (JADES). This area is in and around the Hubble Space Telescope’s Ultra Deep Field. Scientists used Webb’s NIRCam instrument to observe the field in nine different infrared wavelength ranges. From these images, the team searched for faint galaxies that are visible in the infrared but whose spectra abruptly cut off at a critical wavelength. NASA, ESA, CSA, and M. Zamani (ESA/Webb). Science: B. Robertson (UCSC), S. Tacchella (Cambridge), E. Curtis-Lake (Hertfordshire), S. Carniani (Scuola Normale Superiore), and the JADES Collaboration.

The advantage of looking at the same area of the sky imaged by Hubble is that it enables the researchers to identify galaxies that are visible in Webb’s infrared range but invisible in Hubble’s optical range. That indicates that galaxies are highly redshifted, meaning their light is shifted to the redder end of the spectrum due to the expansion of the universe. And in principle, the higher the redshift, the older the galaxy.

This is how researchers are able to pinpoint the oldest galaxies visible in a deep field image. However, researchers then need to confirm these findings as it’s possible for younger galaxies that are closer to us to appear as if they are actually much older. That’s where the new research comes in, as it used spectroscopy to break down the light from these early galaxies into different wavelengths. This shows a distinct “fingerprint” for each galaxy which helps to confirm that it actually is an early galaxy and not a nearby one.

Of the potential earliest galaxies discovered so far, this research has confirmed that four of these have a redshift of above 10, and two have a redshift above 13. That indicates these oldest galaxies come from a time when the universe was less than 400 million years old.

“For the first time, we have discovered galaxies only 350 million years after the big bang, and we can be absolutely confident of their fantastic distances,” said co-author Brant Robertson of the University of California, Santa Cruz, in a statement. “To find these early galaxies in such stunningly beautiful images is a special experience.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Machine learning used to sharpen the first image of a black hole
A team of researchers, including an astronomer with NSF’s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The image of the M87 supermassive black hole originally published by the EHT collaboration in 2019 (left); and a new image generated by the PRIMO algorithm using the same data set (right).

The world watched in delight when scientists revealed the first-ever image of a black hole in 2019, showing the huge black hole at the center of galaxy Messier 87. Now, that image has been refined and sharpened using machine learning techniques. The approach, called PRIMO or principal-component interferometric modeling, was developed by some of the same researchers that worked on the original Event Horizon Telescope project that took the photo of the black hole.

That image combined data from seven radio telescopes around the globe which worked together to form a virtual Earth-sized array. While that approach was amazingly effective at seeing such a distant object located 55 million light-years away, it did mean that there were some gaps in the original data. The new machine learning approach has been used to fill in those gaps, which allows for a more sharp and more precise final image.

Read more
James Webb captures stunning image of supernova remnant Cassiopeia A
Cassiopeia A (Cas A) is a supernova remnant located about 11,000 light-years from Earth in the constellation Cassiopeia. It spans approximately 10 light-years. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light.

A stunning new image from the James Webb Space Telescope shows a famous supernova remnant called Cassiopeia A, or Cas A. When a massive star comes to the end of its life and explodes in a huge outpouring of light and energy called a supernova, it leaves behind a dense core that can become a black hole or a neutron star. But that's not all that remains after a supernova: the explosion can leave its mark on nearby clouds of dust and gas that are formed into intricate structures.

The image of Cas A was taken using Webb's MIRI instrument, which looks in the mid-infrared range. Located 11,000 light-years away, Cassiopeia A is one of the brightest objects in the sky in the radio wavelength, and is also visible in the optical, infrared, and X-ray wavelengths. To see the different features picked up in different wavelengths, you can look at the slider comparison of the Webb infrared image alongside a Hubble visible light image of the same object.

Read more
James Webb captures the rarely-seen rings around Uranus
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) on 6 February 2023, reveals stunning views of the planet’s rings. The planet displays a blue hue in this representative-colour image, made by combining data from two filters (F140M, F300M) at 1.4 and 3.0 microns, shown here as blue and orange, respectively.

The James Webb Space Telescope spends much of its time peering out into distant regions of space searching for some of the earliest galaxies to exist, but it also occasionally turns its sights onto targets a little closer to home. Following up on its image of Neptune released last year, astronomers using Webb have just released a brand-new image of Uranus as you've never seen it before.

As Webb looks in the infrared wavelength, unlike telescopes like Hubble which look in the visible light spectrum, its image of Uranus picks out some features of the planet which are hard to see otherwise like its dusty rings. Uranus' rings are almost invisible in the optical wavelength, but in this new image, they stand out proudly.

Read more