Skip to main content

James Webb uses spectroscopy to identify earliest galaxies to date

The James Webb Space Telescope was designed to, among other things, look back in history to search out some of the earliest galaxies ever to exist. Now, new research has provided confirmation that Webb identified some of the oldest galaxies yet, estimated to be 13.4 billion years old.

This is early-release research, meaning it has not yet been peer reviewed, but it gives an indication of what kinds of discoveries are possible with Webb. The data comes from a survey called the JWST Advanced Deep Extragalactic Survey (JADES), an international collaboration using Webb’s instruments to observe the same area of the sky that Hubble previously imaged in its famous Ultra Deep Field.

A region of study by the JWST Advanced Deep Extragalactic Survey (JADES).
This image taken by the James Webb Space Telescope highlights the region of study by the JWST Advanced Deep Extragalactic Survey (JADES). This area is in and around the Hubble Space Telescope’s Ultra Deep Field. Scientists used Webb’s NIRCam instrument to observe the field in nine different infrared wavelength ranges. From these images, the team searched for faint galaxies that are visible in the infrared but whose spectra abruptly cut off at a critical wavelength. NASA, ESA, CSA, and M. Zamani (ESA/Webb). Science: B. Robertson (UCSC), S. Tacchella (Cambridge), E. Curtis-Lake (Hertfordshire), S. Carniani (Scuola Normale Superiore), and the JADES Collaboration.

The advantage of looking at the same area of the sky imaged by Hubble is that it enables the researchers to identify galaxies that are visible in Webb’s infrared range but invisible in Hubble’s optical range. That indicates that galaxies are highly redshifted, meaning their light is shifted to the redder end of the spectrum due to the expansion of the universe. And in principle, the higher the redshift, the older the galaxy.

Recommended Videos

This is how researchers are able to pinpoint the oldest galaxies visible in a deep field image. However, researchers then need to confirm these findings as it’s possible for younger galaxies that are closer to us to appear as if they are actually much older. That’s where the new research comes in, as it used spectroscopy to break down the light from these early galaxies into different wavelengths. This shows a distinct “fingerprint” for each galaxy which helps to confirm that it actually is an early galaxy and not a nearby one.

Of the potential earliest galaxies discovered so far, this research has confirmed that four of these have a redshift of above 10, and two have a redshift above 13. That indicates these oldest galaxies come from a time when the universe was less than 400 million years old.

“For the first time, we have discovered galaxies only 350 million years after the big bang, and we can be absolutely confident of their fantastic distances,” said co-author Brant Robertson of the University of California, Santa Cruz, in a statement. “To find these early galaxies in such stunningly beautiful images is a special experience.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more
James Webb captures a stunning view of the dreamy Flame Nebula
Webb's image of the Flame Nebula

Our universe is host to many beautiful and fascinating objects, and we're lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion.

This nebula is a busy stellar nursery, with many new stars being formed there. But it isn't stars which researchers were interested in when they looked to the nebula -- in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

Read more
James Webb to join observations of asteroid that could strike Earth in 2032
Artist's impression of an asteroid. This image is not intended to reflect the characteristics of any specific known asteroid.

If you've been following the story of an asteroid that could hit Earth in 2032, there's bad news and good news. The bad news is that the likelihood of the asteroid striking the Earth has now risen slightly, but the good news is that astronomers are using tools like the James Webb Space Telescope to track it in more detail.

The probability that Asteroid 2024 YR4 will impact Earth on December 22, 2032 has now risen to 2.3%, according to NASA. The asteroid is being observed by ground-bases telescopes that are part of the International Asteroid Warning Network, which will be following the it for as long as it continues to be visible -- which should be through April this year. After that, it will be too faint to observe until 2028.

Read more