James Webb images capture the galactic winds of newborn stars

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb’s NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the center of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s center can help astronomers understand the different phases of star formation and the timelines for each stage. NASA, ESA, CSA, STScI, A. Bolatto (UMD)
This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows M82’s galactic wind via emission from sooty chemical molecules known as polycyclic aromatic hydrocarbons (PAHs). PAHs are very small dust grains that survive in cooler temperatures but are destroyed in hot conditions. The structure of the emission resembles that of hot, ionized gas, suggesting PAHs may be replenished by continued ionization of molecular gas. NASA, ESA, CSA, STScI, A. Bolatto (UMD)

“M82 has garnered a variety of observations over the years because it can be considered as the prototypical starburst galaxy,” said Alberto Bolatto, lead author of the research, in a statement. “Both Spitzer and Hubble space telescopes have observed this target. With Webb’s size and resolution, we can look at this star-forming galaxy and see all of this beautiful new detail.”

Recommended Videos

As Bolatto mentions, one of the famous observations of M82 is from the Hubble Space Telescope. Hubble took a gorgeous image of the galaxy in 2006, viewing it primarily in the optical wavelength, but the new images from Webb provide a different view as they cover the infrared.

“This image shows the power of Webb,” said Rebecca Levy, second author of the study, at the University of Arizona in Tucson. “Every white dot in this image is either a star or a star cluster. We can start to distinguish all of these tiny point sources, which enables us to acquire an accurate count of all the star clusters in this galaxy.”

The researchers have identified features like small specks of green, which indicate the presence of iron from supernova remnants, and areas of red which represent ionized hydrogen gas, illuminated by nearby stars. The team was particularly interested in the streams of particular blowing away from areas of newly formed stars, called galactic wind.

“With these amazing Webb images, and our upcoming spectra, we can study how exactly the strong winds and shock fronts from young stars and supernovae can remove the very gas and dust from which new stars are forming,” said Torsten Böker of the European Space Agency, a co-author of the study. “A detailed understanding of this ‘feedback’ cycle is important for theories of how the early Universe evolved, because compact starbursts such as the one in M82 were very common at high redshift.”

The research has been accepted for publication in The Astrophysical Journal.

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronaut captures stunning images of a snowy Grand Canyon

In the final days of his six-month stint aboard the International Space Station (ISS), Danish astronaut Andreas Mogensen took some time out of his science work to snap some striking photos of a snow-covered Grand Canyon.

The images were captured from the station in recent days as it orbited Earth at an altitude of around 250 miles.

Read more
This famous supernova remnant is hiding a secret

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more