Skip to main content

This extreme exoplanet’s atmosphere is being sunburned by its host star

In the wide range of planets we’ve observed beyond our solar system, some of the most extreme are of a type called hot Jupiters. These are gas giants which are similar to Jupiter but orbit so close to their stars that a year on one lasts less than 10 days. On these planets, temperatures can reach thousands of degrees Fahrenheit, leading to some weird and wonderful effects.

An artist's illustration of the planet KELT-20b which orbits a blue-white star.
This is an artist’s illustration of the planet KELT-20b which orbits a blue-white star. The giant planet is so close to its star (5 million miles) that the torrent of ultraviolet radiation from the star heats the planet’s atmosphere to over 3,000 degrees Fahrenheit. NASA, ESA, Leah Hustak (STScI)

One such hot Jupiter, recently described in a paper in the journal Astrophysical Journal Letters, has a particularly distinctive atmosphere. The planet KELT-20b, located 400 light-years away, is located just 5 million miles away from its star and is bombarded by ultraviolet (UV) radiation. This heats the planet’s atmosphere to over 3,000 degrees Fahrenheit, which is creating a layer in the atmosphere similar to Earth’s stratosphere which absorbs UV rays.

This layer creates a phenomenon called thermal inversion, in which the upper layers of the atmosphere are hotter than the lower layers of the atmosphere. On our planet, this layer is formed by ozone, but on KELT-20b, the layer is formed from metals that have boiled and are now present in the atmosphere.

It is this interaction between radiation from the host star and the planet’s atmosphere that is an important step forward in understanding exoplanets. “Until now we never knew how the host star affected a planet’s atmosphere directly,” said lead author Guangwei Fu of the University of Maryland in a statement. “There have been lots of theories, but now we have the first observational data.”

To learn about the atmosphere of this far-off exoplanet, the researchers used data from Hubble in the near-infrared wavelength as well as data from NASA’s Spitzer Space Telescope to look at the signals of water and carbon monoxide coming from the planet. These signatures are different from what has been seen in other Jupiter-like planets which orbit close to cooler stars. “The emission spectrum for KELT-20b is quite different from other hot Jupiters,” said Fu. “This is compelling evidence that planets don’t live in isolation but are affected by their host star.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more
How James Webb peers into the atmospheres of far-off exoplanets
Illustration of a planet on a black background. The planet is large and rocky. Roughly two-thirds of the planet is lit, while the rest is in shadow.

We are entering a new period of exoplanet astronomy, with a recent announcement that the James Webb Space Telescope has detected its first exoplanet. The promise of Webb is that it will be able to not only spot exoplanets but also study their atmospheres, which would mark a major step forward in exoplanet science.

Studying exoplanets is extremely challenging because they are generally far too far away and too small to be observed directly. Very occasionally, a telescope is able to directly image an exoplanet, but most of the time researchers have to infer that a planet is present by looking at the star around which it orbits. There are several methods for detecting planets based on their effects on a star, but one of the most commonly used is the transit method, in which a telescope observes a star and looks for a very small dip in brightness which happens when a planet passes between the star and us. This is the method Webb used to detect its first exoplanet, named LHS 475 b.

Read more