Skip to main content

James Webb survey image shows a field of shining galaxies

As well as providing new information about objects like exoplanets and giving new views of some famous space scenes, the James Webb Space Telescope is also being used to observe large patches of the sky in wide-scale surveys. Researchers from one such Webb survey, called the Prime Extragalactic Areas for Reionization and Lensing Science or PEARLS, recently released their first results showing an area of the sky called the North Ecliptic Pole.

This image shows around 2% of the sky, as captured by both Webb’s Near-Infrared Camera or NIRCam and the Hubble Space Telescope’s Advanced Camera for Surveys. This is just a part of the PEARLS survey, but shows thousands of galaxies including some extremely distant ones. You can see a zoomable version of the image on the Webb website.

A swath of sky measuring 2% of the area covered by the full moon imaged with Webb’s Near-Infrared Camera.
A swath of sky measuring 2% of the area covered by the full moon was imaged with Webb’s Near-Infrared Camera (NIRCam) in eight filters, and with Hubble’s Advanced Camera for Surveys (ACS) and Wide-Field Camera 3 (WFC3) in three filters that together span the 0.25 to 5-micron wavelength range. This image represents a portion of the full PEARLS field, which will be about four times larger. NASA, ESA, CSA, A. Pagan (STScI) & R. Jansen (ASU). SCIENCE: R. Jansen, J. Summers, R. O'Brien, and R. Windhorst (Arizona State University); A. Robotham (ICRAR/UWA); A. Koekemoer (STScI); C. Willmer (UofA); and the PEARLS team.

“For over two decades, I’ve worked with a large international team of scientists to prepare our Webb science program,” said lead author of the research, Rogier Windhorst of Arizona State University, in a statement. “Webb’s images are truly phenomenal, really beyond my wildest dreams. They allow us to measure the number density of galaxies shining to very faint infrared limits and the total amount of light they produce. This light is much dimmer than the very dark infrared sky measured between those galaxies.”

Some of the interesting features being studied by the PEARLS survey include the accretion disks which form around supermassive black holes in the center of galaxies, a pair of overlapping galaxies called the VV 191 galaxy system, and some extremely old galaxies with very high redshift, the light of which has been traveling for almost 13.5 billion years.

“I was blown away by the first PEARLS images,” said coauthor Rolf Jansen. “Little did I know, when I selected this field near the North Ecliptic Pole, that it would yield such a treasure trove of distant galaxies, and that we would get direct clues about the processes by which galaxies assemble and grow. I can see streams, tails, shells, and halos of stars in their outskirts, the leftovers of their building blocks.”

The research is published in The Astronomical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
Dramatic images show a large satellite tumbling toward Earth
ESA's ERS-2 satellite tumbling toward Earth.

An illustration of the European Space Agency's ERS-2 satellite. ESA

The European Space Agency (ESA) has shared remarkable images showing one of its satellites in what it describes as a “tumbling descent.”

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more