Skip to main content

Everything you need to know about the magical magnetic goop known as ferrofluid

Holiday Gift Guide Banner
Image used with permission by copyright holder

This product was featured in our Holiday Gift Guide! Check it out to find gift inspiration for everyone in your life.

If you’ve seen those videos with fascinating ink-like fluid spiraling into thorns and prickling patterns, you’ve seen ferrofluid. But what exactly is this stuff, and why does it act that way? Is it really some type of liquid magnet? Perhaps more importantly, can you get some? Let’s dive in!

Ferrofluid: When magnets go nano

The typical ferrofluid you see in viral videos is made by mixing a bunch of very, very small bits of iron oxide with oil, and usually some kind of surfactant to prevent the pieces from clogging together. The most common kind of iron oxide used in ferrofluid is known as magnetite, because — you guessed it — it’s a ferromagnetic material that’s not only attracted to magnets, but that can also be magnetized and turned into a permanent magnet itself. Ferrofluid is basically little bits of this stuff suspended in goo; that’s the easy answer.

The more complicated explanation is all about nanoparticles. Back in the 1960s, experiments in chemistry showed that ferrofluids could be created and stabilized — a discovery actually made by NASA while searching for ways to control liquid fuel in the weightlessness of space.

Image used with permission by copyright holder

Improved techniques eventually yielded easy ways to splice iron oxide into nanoparticles around 10 nanometers wide. That’s so small that these particles rarely even settle to the bottom of the fluid — they just stay suspended, floating around. They are even subject to good old Brownian motion, which keeps the ferrofluid evenly distributed and slick for long periods of time.

Making those weird designs

Okay, but how does the ferrofluid magically transform into spikes and those crazy hedgehog shapes?

Think of it as a very careful chemical balancing act involving many different forces all hitting a sweet spot. Imagine that you apply a magnetic force to a ferrofluid, say, through a permanent magnet you have lying around. Here are several of the key interactions that happen:

  1. The magnetite acts as magnetite does and is attracted/repelled based on the magnetic field – all those little nanoparticles respond to the force and start moving.
  2. The surfactant (the same kind of chemical used in detergent to remove stains) remains ultra-slippery and refuses to let the nanoparticles attach to each other. They keep slipping away while they move, forming quick bonds with the surfactant instead to become a special type of ligand, or a coordinate bond with a metal atom.
  3. At the same time, the surface of the ferrofluid experiences a lot of surface tension, which allows the fluid to maintain shapes for longer periods of time when it is drawn out.
  4. Meanwhile, Van der Waals forces are having a similar effect on the molecules within the mixture, allowing them to maintain a surprising amount of cohesion as the ferrofluid moves.
  5. On top of it all, as the ferrofluid is being pulled by the magnetic force, the heaviest parts are also being dragged back down by gravity at the same time.

Add it all together, and what do you get? A dazzling display of spikes, rivulets, and magical behavior. Additionally, the fluid is what is known as “superparamagnetic” which means that, unlike normal magnetite, it loses its charge every time and collapses back into a fluid, unable to hold a permanent, magnetically stabilized form.

Image used with permission by copyright holder

Note that this mixture of reactions doesn’t happen with all ferrofluids, all the time. The ferrofluid demonstrations you see online or in a lab are made with particular ferrofluids that are known for having that kind of effect. Other ferrofluids can behave in different ways, although none are quite as visually striking.

Practical applications for ferrofluid

Remember, ferrofluids weren’t originally designed for fun: They can be created from iron, cobalt, nickel, and a variety of different oils and surfactants, giving them a variety of applications in the industrial world. The most important is probably their use in semiconductor manufacturing, where the fluid is used to seal powerful hydraulic machinery and other components to increase power while preventing contamination.

For an example a little closer to home, consider large, fancy speakers. Sometimes these loudspeakers use a magnet surrounded by ferrofluid: This keeps the magnet cool and helps prevent unwanted vibrations. Likewise, customized SATA hard drives sometimes use ferrofluids for similar reasons.

In the future, scientists hope to successfully use ferrofluid as a transmitting material for chemical treatments in healthcare – for example, allowing doctors to control exactly where a drug is focused in the body.

Buying that cool ferrofluid

One of the useful things about ferrofluids (unlike other showy pieces of science) is that you can easily locate safe versions, which makes them great for showing off in the classroom or at home. Yes, you can absolutely buy your own ferrofluids, and you even have a couple different options:

  • Kits with bottled ferrofluid: These tend to be cheap and easy to play with. However, ferrofluids are notorious for staining anything they touch, so you’ll have to be very careful when using them. Some experience is preferred.
  • Glass display bottles: These are safer and prettier – you simply use magnets to move the ferrofluid around the bottle. However, there are two problems here. First, these bottles don’t last forever, because the ferrofluid eventually starts to settle or coats the bottle surface. Second, these bottles are tightly sealed, which means they often fare poorly in freezing temperatures.
  • Artistic display options: These are fancier bottles or lava lamp-like displays designed more for showing off than teaching. Always read reviews carefully for these to make sure the display doesn’t have any long-term issues.

Creating your own ferrofluid

If you’re more of a DIY-minded person, you can even create your own ferrofluids, although it’s significantly more dangerous than just buying a bottle. However, some hobbyists do create ferrofluid as a powerful acidic reagent, or even use it to make their own art. Just be prepared to use some tricky chemicals like ferric chloride and ammonia, as well as the necessary equipment to boil it (and all the risks that entails). A lab is often the best location for a project like this, and if you find the right class you may even be able to create it as part of a project.

Tyler Lacoma
If it can be streamed, voice-activated, made better with an app, or beaten by mashing buttons, Tyler's into it. When he's not…
Sebastian Stan lays out Bucky’s future after Thunderbolts
Sebastian Stan in Thunderbolts.

There are some spoilers ahead for the ending of Marvel's Thunderbolts. Stop reading now if you don't want to be spoiled.

Earlier this year, Captain America: Brave New World briefly introduced a new direction for James "Bucky" Barnes, a character Sebastian Stan has been playing since 2011 in Captain America: The First Avenger. In Brave New World, the former Winter Soldier apparently retired from being a reformed hero and went into politics by running for Congress. Thunderbolts reveals that Bucky won his election to the House of Representatives. But his stay in Congress was short.

Read more
Jeep Compass EV breaks cover—but will it come to the U.S.?
jeep compass ev us newjeepcompassfirsteditionhawaii  4

Jeep just pulled the wraps off the all-new Compass EV, and while it’s an exciting leap into the electric future, there's a catch—it might not make it to the U.S. anytime soon.
This is a brand new electric version of the Jeep Compass, and being built on Stellantis' STLA platform—the same architecture underpinning models like the Peugeot E-3008 and E-5008—it looks much slicker and packs a lot more inside than previous versions of the Compass.
Let’s start with what’s cool: the new Compass EV is packing up to 404 miles of range on a single charge, a 74 kWh battery, and fast-charging that gets you from 20% to 80% in about 30 minutes. Not bad for a compact SUV with Jeep's badge on the nose.
There are two versions: a front-wheel-drive model with 213 horsepower and a beefier all-wheel-drive version with 375 horsepower. That AWD setup isn’t just for looks—it can handle 20% inclines even without front traction, and comes with extra ground clearance and better off-road angles. In short, it’s still a Jeep.
The design's been refreshed too, and inside you’ll find the kind of tech and comfort you’d expect in a modern EV—sleek, smart, and ready for both city streets and dirt trails.
But here’s the thing: even though production starts soon in Italy, Jeep hasn’t said whether the Compass EV is coming to America. And the signs aren’t promising.
Plans to build it in Canada were recently put on hold, with production now delayed until at least early 2026. Some of that might have to do with possible U.S. tariffs on Canadian and Mexican vehicles—adding a layer of uncertainty to the whole rollout.
According to Kelley Blue Book, a Stellantis spokesperson confirmed that the company has “temporarily paused work on the next-generation Jeep Compass, including activities at” the Canadian plant that was originally meant to build the model. They added that Stellantis is “reassessing its product strategy in North America” to better match customer needs and demand for different powertrain options.
So while Europe and other markets are gearing up to get the Compass EV soon, American drivers might be left waiting—or miss out entirely.
That’s a shame, because on paper, this electric Jeep hits a lot of sweet spots. Let’s just hope it finds a way over here.

Read more
Charlie Cox singles out his least favorite Daredevil: Born Again episode
Charlie Cox in Daredevil: Born Again.

Daredevil: Born Again season 1 was largely reconceived after the 2023 actor and writer strikes. Dario Scardapane -- a veteran of The Punisher series on Netflix -- was brought in to be the new showrunner and he made a lot of changes to the series that were well-received. However, there's one episode that Scardapane didn't really change at all, and it happens to be the least favorite episode of Daredevil: Born Again's leading man, Charlie Cox.

During an appearance on The Playlist, Cox noted that he wasn't very fond of the season's fifth episode, "With Interest," which was a largely standalone episode that featured his character, Matt Murdock, in a bank during a hostage crisis.

Read more