Skip to main content

Genetic engineers are working on making an invisible man. Seriously

Hot off the heels of Blumhouse Productions’ The Invisible Man movie, scientists at the University of California, Irvine have published a paper describing work that could make such a thing possible in real life. Maybe. And it’s all thanks to a helpful assist from a very specific squid protein.

The project involves genetically engineering human cells to have the ability to vary their transparency. This is based on a characteristic found in cephalopods, the family of marine animals to which the squid belongs, that are able to change both the color and transparency of their skin. For example, certain female squid scare off aggressive males by changing the color of transparent tissue on their body to mimic the size, color, and position of testes found on male squid.

What the researchers did in this latest piece of work was to take embryonic human kidney cells and grow them in a dish using a special technique to create the same protein found in color and transparency-shifting squid.

“We genetically engineered human cells to produce a squid protein called reflectin,” Alon Gorodetsky, a researcher in chemical engineering and material science at UC Irvine, told Digital Trends. “The protein formed particles within the cells, which we visualized with various types of microscopy. The particles’ presence changed the optical properties — [the] refractive index — of the cells and thus altered the way they scattered light. We then showed that we could tune the cells’ scattering of light with a chemical stimulus, salt, effectively changing their transparency.”

This is an early step toward developing cells that could be reversibly and tunably changed to alter their transparency levels. “We [now] need to develop improved strategies for controlling both the assembly of the protein-based particles without our cells and for tuning their optical properties in real time,” Gorodetsky explained. “A better understanding of the structure and self-assembly of reflectin proteins would be important for informing our efforts.”

As he noted, “there is a lot of work, and many steps, left before we can achieve genetically encoded invisibility.” But such a thing could be “possible very far down the line,” although it will require “numerous breakthroughs” to get there.

Considering that Invisible Man movies never seem to end up with the protagonist turning out to be a particularly swell guy, perhaps that’s ultimately a good thing.

The UC Irvine research was recently published in the journal Nature Communications.

Editors' Recommendations

This is how you work off festive excesses — if you’re in space
The International Space Station.

If working off all of the extra calories you consumed in recent days involves little more than lifting the remote, selecting a show to watch, and putting it back down again, then you’re probably doing it wrong.

Take a look at how current space station inhabitant Matthias Maurer is tackling the challenge and you should get a better idea about the recommended course of action to take.

Read more
Space Station astronauts use AR headset to upgrade particle physics hardware
NASA Astronaut Megan McArthur dons a Microsoft HoloLens, a mixed reality (or augmented reality) headset, which allows her to see both the spacearound her as well as digital displays in her field of view.

Mixed Reality headsets aren't only for playing VR games on Earth: The astronauts aboard the International Space Station are making use of an Augmented Reality (AR) system based on commercial Microsoft HoloLens hardware with custom-designed software. Recently, NASA astronaut Megan McArthur used a HoloLens headset to perform a hardware replacement on a highly complex piece of equipment: The station's Cold Atom Lab.

Mixed Reality Meets Quantum Science on the International Space Station

Read more
Next-generation batteries could use material derived from trees
Tree scene photo taken with the OnePlus 9 Pro

A team of scientists has found a way to make use of an unusual material in next-generation batteries: Wood. The team from Brown University has developed a tree-derived material to be used in solid-state batteries, which are safer and less environmentally damaging than current batteries.

Current generation lithium-ion batteries, like those used in phones, computers, and electronic vehicles, use volatile liquids as electrolytes. These electrolytes conduct lithium ions between the positive and negative electrodes of a battery. Liquid electrolytes do this job well, but they are toxic and can be dangerous. If the battery experiences a short circuit, for example, the liquid can combust and the battery can catch fire. This isn't usually a problem in everyday use, but it has led to the recall of some batteries which have been incorrectly manufactured.

Read more