Skip to main content

Colliding black holes could explode in epic light flares

We know that black holes absorb everything that comes near them, even light, which is one reason why they’re so tricky to research. And dramatic things happen when two black holes collide — not only do these epic collisions give off gravitational waves, but a new theory suggests they may also explode with light.

Researchers from the California Institute of Technology spotted a strange flare of light from supermassive black hole J1249+3449 using the Zwicky Transient Facility (ZTF) at Palomar Observatory. They tracked its source to an area also being studied by the famous LIGO observatory which looks for gravitational waves from colliding black holes.

“This supermassive black hole was burbling along for years before this more abrupt flare,” Matthew Graham, a research professor of astronomy at Caltech and the project scientist for ZTF, explained in a statement. “The flare occurred on the right timescale, and in the right location, to be coincident with the gravitational-wave event. In our study, we conclude that the flare is likely the result of a black hole merger, but we cannot completely rule out other possibilities.”

Artist's concept of a supermassive black hole and its surrounding disk of gas.
Artist’s concept of a supermassive black hole and its surrounding disk of gas. Embedded within this disk are two smaller black holes orbiting one another. Caltech/R. Hurt (IPAC)

To explain how two light-absorbing black holes could collide and release a burst of light, the researchers theorized that the two merging black holes sit within a disk surrounding a much larger black hole.

“At the center of most galaxies lurks a supermassive black hole. It’s surrounded by a swarm of stars and dead stars, including black holes,” co-author K. E. Saavik Ford explained in the statement. “These objects swarm like angry bees around the monstrous queen bee at the center. They can briefly find gravitational partners and pair up but usually lose their partners quickly to the mad dance. But in a supermassive black hole’s disk, the flowing gas converts the mosh pit of the swarm to a classical minuet, organizing the black holes so they can pair up,” she said.

The two black holes within this disk merge, sending out a shockwave of energy through the cloud of gas. “It is the reaction of the gas to this speeding bullet that creates a bright flare, visible with telescopes,” co-author Barry McKernan explained.

Studying events like this could help scientists to learn more about black holes of all sizes. “Supermassive black holes like this one have flares all the time. They are not quiet objects, but the timing, size, and location of this flare was spectacular,” said co-author Mansi Kasliwal. “The reason looking for flares like this is so important is that it helps enormously with astrophysics and cosmology questions. If we can do this again and detect light from the mergers of other black holes, then we can nail down the homes of these black holes and learn more about their origins.”

The findings are published in the journal Physical Review Letters.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers spot a monster black hole ‘practically in our backyard’
The cross-hairs mark the location of the newly discovered monster black hole.

Black holes come in a variety of sizes, from stellar black holes a few times the mass of the sun all the way up to supermassive black holes, which are millions of times the mass of the sun and lurk at the heart of galaxies. Recently, astronomers discovered a massive black hole just 1,550 light-years away, which is right in our neighborhood, astronomically speaking. It is one of the closest black holes ever discovered, with a mass 12 times that of the sun. Being so close to us, it's an exciting target for future research.

The cross-hairs mark the location of the newly discovered monster black hole. Sloan Digital Sky Survey / S. Chakrabart et al.

Read more
Something strange is up with this black hole
Artist’s illustration of tidal disruption event AT2019dsg where a supermassive black hole spaghettifies and gobbles down a star. Some of the material is not consumed by the black hole and is flung back out into space.

One of the first things that people learn about black holes is that they absorb everything which comes close to them, but this isn't exactly accurate. It is true that once anything passes the event horizon of a black hole it can never escape, but there is a significant area around the black hole where its gravitational effects are still extremely strong but things can still escape. In fact, black holes regularly give off dramatic jets of matter, which are typically thrown out when material falls into the black hole and a small amount is ejected outward at great speeds.

But astronomers recently discovered a totally mysterious phenomenon, where a black hole is ejecting material years after it ripped apart a star. The black hole AT2019dsg is located 665 million light-years away and was observed tearing apart the star in 2018, then for unknown reasons, it became extremely active again in 2021. “This caught us completely by surprise — no one has ever seen anything like this before,” said lead author Yvette Cendes, a research associate at the Center for Astrophysics | Harvard & Smithsonian (CfA).

Read more
Astronomers want your help to spot hidden black holes
This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes.

Black holes are some of the most mind-bending objects in the universe. They are so dense that anything which passes their event horizon, even light, can't escape. That's where they get their name, as the black hole itself is impossible to see. Fortunately for researchers, many black holes have material like dust and gas around them, and when this material falls into a black hole it can give off bursts of X-rays which allow them to locate the black hole.

But this isn't the case for every black hole. Some are not taking in material, meaning they don't give off X-rays and are much harder to locate. Now, a citizen science project is inviting members of the public to help search for these "hidden" black holes.

Read more