Skip to main content

Colliding black holes could explode in epic light flares

We know that black holes absorb everything that comes near them, even light, which is one reason why they’re so tricky to research. And dramatic things happen when two black holes collide — not only do these epic collisions give off gravitational waves, but a new theory suggests they may also explode with light.

Researchers from the California Institute of Technology spotted a strange flare of light from supermassive black hole J1249+3449 using the Zwicky Transient Facility (ZTF) at Palomar Observatory. They tracked its source to an area also being studied by the famous LIGO observatory which looks for gravitational waves from colliding black holes.

“This supermassive black hole was burbling along for years before this more abrupt flare,” Matthew Graham, a research professor of astronomy at Caltech and the project scientist for ZTF, explained in a statement. “The flare occurred on the right timescale, and in the right location, to be coincident with the gravitational-wave event. In our study, we conclude that the flare is likely the result of a black hole merger, but we cannot completely rule out other possibilities.”

Artist's concept of a supermassive black hole and its surrounding disk of gas.
Artist’s concept of a supermassive black hole and its surrounding disk of gas. Embedded within this disk are two smaller black holes orbiting one another. Caltech/R. Hurt (IPAC)

To explain how two light-absorbing black holes could collide and release a burst of light, the researchers theorized that the two merging black holes sit within a disk surrounding a much larger black hole.

“At the center of most galaxies lurks a supermassive black hole. It’s surrounded by a swarm of stars and dead stars, including black holes,” co-author K. E. Saavik Ford explained in the statement. “These objects swarm like angry bees around the monstrous queen bee at the center. They can briefly find gravitational partners and pair up but usually lose their partners quickly to the mad dance. But in a supermassive black hole’s disk, the flowing gas converts the mosh pit of the swarm to a classical minuet, organizing the black holes so they can pair up,” she said.

The two black holes within this disk merge, sending out a shockwave of energy through the cloud of gas. “It is the reaction of the gas to this speeding bullet that creates a bright flare, visible with telescopes,” co-author Barry McKernan explained.

Studying events like this could help scientists to learn more about black holes of all sizes. “Supermassive black holes like this one have flares all the time. They are not quiet objects, but the timing, size, and location of this flare was spectacular,” said co-author Mansi Kasliwal. “The reason looking for flares like this is so important is that it helps enormously with astrophysics and cosmology questions. If we can do this again and detect light from the mergers of other black holes, then we can nail down the homes of these black holes and learn more about their origins.”

The findings are published in the journal Physical Review Letters.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The universe has a cosmic ‘hum’ caused by merging black holes
This artist’s concept shows stars, black holes, and nebula laid over a grid representing the fabric of space-time.

In the last decade, astronomers made a major discovery, confirming the existence of gravitational waves. These long-theorized ripples in spacetime are created when extremely massive bodies such as two black holes collide, creating shocks that spread out across the universe and can be detected from millions of light-years away.

Now, a 15-year study has provided more evidence of these gravitational waves, including those at very low frequencies. A large international team in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration used three ground-based telescopes, the Arecibo Observatory in Puerto Rico, the Green Bank Telescope in West Virginia, and the Very Large Array in New Mexico, to observe pulsars. These rotating neutron stars give off regular pulses of energy, and these pulses can be affected by gravitational waves. By looking for small deviations in the pulses, the researchers were able to see how spacetime was being rippled.

Read more
Astronomers just spotted the largest cosmic explosion ever seen
Artist’s impression of a black hole accretion.

Astronomers recently observed the largest cosmic explosion ever seen, far brighter than a supernova and lasting for much longer too. They believe that the outpouring of light is due to a supermassive black hole devouring a large cloud of gas.

Some of the brightest events seen in the sky are supernovae, which are huge explosions that occur when a massive star comes to the end of its life. But the recently observed event, called AT2021lwx, was 10 times brighter than any known supernova. Supernovae also typically last for a few months, but this event has been shining out for several years.

Read more
See the terrifying scale of a supermassive black hole in NASA visualization
Illustration of the black hole Sagittarius A* at the center of the Milky Way.

This week is black hole week, and NASA is celebrating by sharing some stunning visualizations of black holes, including a frankly disturbing visualization to help you picture just how large a supermassive black hole is. Supermassive black holes are found at the center of galaxies (including our own) and generally speaking, the bigger the galaxy, the bigger the black hole.

Illustration of the black hole Sagittarius A* at the center of the Milky Way. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

Read more