Skip to main content

Citizen scientists help discover a Jupiter-like planet 379 light-years away

Much of the work done in astronomy requires large groups of people co-operating and working together to make new discoveries. While most of that work is done by professional astronomers, there are some occasions where members of the public help as well. Recently, citizen scientists have helped comb through data from a NASA telescope to identify a gas giant planet located 379 light-years away.

The team of citizen scientists used data from the Transiting Exoplanet Survey Satellite, or TESS, to identity planet TOI-2180 b. It orbits a star with a similar mass to our sun, and a year there lasts 261 days, which makes it one of the further-out gas giants discovered outside the solar system. “Discovering and publishing TOI-2180 b was a great group effort demonstrating that professional astronomers and seasoned citizen scientists can successfully work together,” said Tom Jacobs, one of the citizen scientists who volunteered for the project, in a statement. “It is synergy at its best.”

This illustration depicts a Jupiter-like exoplanet called TOI-2180 b. It was discovered in data from NASA's Transiting Exoplanet Survey Satellite.
This illustration depicts a Jupiter-like exoplanet called TOI-2180 b. It was discovered in data from NASA’s Transiting Exoplanet Survey Satellite. NASA/JPL-Caltech/R. Hurt

Many exoplanets are spotted by looking for transits, or times when a planet passes between a star and Earth. The dip in the brightness of the star can tell astronomers about the properties of the planet. However, this requires the telescope, the planet, and the star to be carefully lined up. It also works best with planets that are close to their stars.

“With this new discovery, we are also pushing the limits of the kinds of planets we can extract from TESS observations,” said researcher Diana Dragomir. “TESS was not specifically designed to find such long-orbit exoplanets, but our team, with the help of citizen scientists, are digging out these rare gems nonetheless.”

Transits are usually spotted by computer algorithms, but in this case, because it orbits far from its star, the planet only made one transit in the data. That’s where the citizen scientists came in — they helped to identify potential exoplanets based on their light curves, or graphs of brightness from a star over time.

“The manual effort that they put in is really important and really impressive because it’s actually hard to write code that can go through a million light curves and identify single transit events reliably,” said fellow researcher Paul Dalba. “This is one area where humans are still beating code.”

Now both the professionals and the citizen scientists are keen to see what they find when TESS observes the same star again in February when they are hoping to find confirmation of the planet’s orbit.

“We love contributing to science,” Jacobs said. “And I love this type of surveying, knowing that one is in new undiscovered territory not seen by any humans before.”

The research is published in The Astronomical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This galaxy is a mind-bending 13.5 billion light-years away
A zoom-in image of galaxy HD1.

The universe is a bit less than 14 billion years old, and because light takes time to travel, looking far enough away is like looking back in time to the start of the universe. Recently, an international team of astronomers identified the most distant astronomical object ever observed: A galaxy 13.5 billion light-years away, which formed just 300 million years after the Big Bang.

The galaxy has been named HD1 and identifying it required considerable patience and the use of four different telescopes -- the Subaru Telescope, VISTA Telescope, UK Infrared Telescope, and Spitzer Space Telescope -- with a total of more than 1,200 hours of observations. The distance to the galaxy was confirmed using another instrument, the Atacama Large Millimetre/submillimetre Array (ALMA), which is an array of 66 radio telescopes working together in Chile.

Read more
Astronomers discover ‘Jupiter’s identical twin’ exoplanet
exoplanet haul transits2 on starfield editable 02 20x30

The Kepler Space Telescope may have been retired in 2018, but data from the mission is still being used to make new discoveries. Recently, an international team of astronomers used data from the mission to identify a new planet that is remarkably similar to Jupiter but is located almost 17,000 light-years away.

The planet, named K2-2016-BLG-0005Lb, was discovered by sifting through Kepler data collected in 2016. It is almost exactly the same mass as Jupiter, and it is located similarly far from its star as Jupiter is to the sun. That makes it, as the authors of the study write, "a close Jupiter analogue."

Read more
Hubble captures an elegant spiral galaxy 60 million light-years away
A stunning view of the spiral galaxy NGC 4571.

This week's image from the Hubble Space Telescope shows the spiral galaxy NGC 4571, located 60 million light-years away in the constellation of Coma Berenices, and was captured using Hubble's Wide Field Camera 3 instrument.

This cosmic portrait – captured with the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 – shows a stunning view of the spiral galaxy NGC 4571, which lies approximately 60 million light-years from Earth in the constellation Coma Berenices. This constellation – whose name translates as Bernice’s Hair – was named after an Egyptian queen who lived more than 2,200 years ago. ESA/Hubble & NASA, J. Lee and the PHANGS-HST Team

Read more