Skip to main content

Inside giant ice planets, it could be raining diamonds

The universe is stranger than you can imagine, and out in the depths of space, there are wild and weird exoplanets to be found — planets with glowing rivers of lava, or planets under gravitational forces so strong they are shaped like a football. We can add to this list another class of strange planet, ones on which it rains diamonds.

The diamond rain effect is thought to occur deep within ice giants like Uranus and Neptune, and it was re-created in a lab here on Earth in 2017. Now, researchers have found that this effect isn’t just a rare fluke but could be more common than previously thought.

Diamond rain could occur on ice giant planets in the presence of oxygen.
Diamond rain can occur deep within ice giant planets and is more common in the presence of oxygen. Greg Stewart/SLAC National Accelerator Laboratory

The international group of researchers working with the SLAC National Accelerator Laboratory previously created the diamond rain effect by placing hydrogen and carbon under extremely high pressures. But in this new research, they wanted to make the conditions more realistic to what the interior of an ice giant planet would be like by also including other elements that would be present, such as oxygen.

Recommended Videos

To simulate this mix of chemicals, the researchers used a familiar material — PET plastic, like that used in good packaging, which turns out to be chemically similar to the conditions they wanted to create. “PET has a good balance between carbon, hydrogen, and oxygen to simulate the activity in ice planets,” explained one of the researchers, Dominik Kraus of the University of Rostock.

The researchers used a high-powered laser to create shock waves in the plastic, then observed how X-rays bounced off it. This let them see how small diamonds were forming. The diamonds produced in the experiment were very small, called nanodiamonds, but at around 5,000 miles beneath the surface of an ice giant much larger diamonds could form, where they would fall toward the planet’s icy core. The diamonds could even sink into the core and form a thick diamond layer.

In the new experiments, the team found that when they included oxygen then the nanodiamonds grew at lower temperatures and pressures, which means that having oxygen present makes the formation of diamond rain more likely. “The effect of the oxygen was to accelerate the splitting of the carbon and hydrogen and thus encourage the formation of nanodiamonds,” Kraus said. “It meant the carbon atoms could combine more easily and form diamonds.”

With this discovery, the researchers now want to try the experiments again and include chemicals like ethanol, water, and ammonia to even more closely model the environments of ice giants.

“The fact that we can recreate these extreme conditions to see how these processes play out on very fast, very small scales is exciting,” said SLAC scientist and collaborator Nicholas Hartley. “Adding oxygen brings us closer than ever to seeing the full picture of these planetary processes, but there’s still more work to be done. It’s a step on the road towards getting the most realistic mixture and seeing how these materials truly behave on other planets.”

The research is published in the journal Science Advances.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This extreme exoplanet has a highly unusual orbit
This artist’s impression shows a Jupiter-like exoplanet that is on its way to becoming a hot Jupiter — a large, Jupiter-like exoplanet that orbits very close to its star. Using the WIYN 3.5-meter telescope at the U.S. National Science Foundation Kitt Peak National Observatory, a Program of NSF NOIRLab, a team of astronomers found that this exoplanet, named TIC 241249530 b, follows an extremely elliptical orbit in the direction opposite to the rotation of its host star.

This artist’s impression shows a Jupiter-like exoplanet that is on its way to becoming a hot Jupiter — a large, Jupiter-like exoplanet that orbits very close to its star. NOIRLab/NSF/AURA/J. da Silva (Spaceengine)

Exoplanets come in all sorts of shapes and sizes, and can be weird in all sorts of ways. There are football shaped exoplanets and exoplanets where it rains gemstones; ones with the density of cotton candy and ones with one lava hemisphere. But new research has uncovered an exoplanet called TIC 241249530 b which is unusual in a different sort of way, as it has one of the most extreme orbits discovered to date.

Read more
There’s a cave on the moon where astronauts could possibly live
lunar lava tubes on the moon

Getting humans into space is hard enough, but having them stay on another body for any length of time is even more challenging. When astronauts visited the moon in the Apollo missions, they lived in their spacecraft for the few days of their missions. But in the future NASA wants to send astronauts to visit places like the moon or Mars for longer -- for periods of weeks or even months. That means they'll need a home habitat of some kind to live in, perform research, and perhaps even grow crops.

Some suggestions for how to build lightweight habitats that are easier to transport include creating inflatable habitats or even growing habitats from fungus. But the most efficient option might be for astronauts to find locations that already exist where they can stay. That's the hope of research into lava tubes -- underground caves found on both the moon and Mars that were created by the movement of lava long ago.

Read more
Exoplanet catalog details over 100 worlds beyond our solar system
TOI-1798, a system that is home to two planets. The inner planet is a strange Super-Earth so close to its star, one year on this alien world lasts only half an Earth day.

TOI-1798 is a system that is home to two planets. The inner planet is a strange Super-Earth so close to its star that one year on this alien world lasts only half an Earth day. W. M. Keck Observatory/Adam Makarenko

A new catalog of exoplanets from two telescopes shows the incredible variety of planets that exist beyond our solar system. The catalog, using data from NASA's TESS (Transiting Exoplanet Survey Satellite) space telescope and the ground-based W. M. Keck Observatory, shows 126 planets, along with the radius, mass, density and temperature of each.

Read more