Skip to main content

Astronomers discover how tiny dwarf galaxies form ‘fossils’

Galaxies come in many different shapes and sizes, including those considerably smaller than our Milky Way. These smaller galaxies, called dwarf galaxies, can have as few as 1,000 stars, compared to the several hundred billion in our galaxy. And when these dwarf galaxies age and begin to erode away, they can transform into an even smaller and more dense shape, called an ultra-compact dwarf galaxy.

The Gemini North telescope has recently been studying more than 100 of these eroding dwarf galaxies, seeing how they lose their outer stars and gas to become ultra-compact dwarf galaxies or UCDs.

A dwarf galaxy in the throes of transitioning to an ultra-compact dwarf galaxy as it’s stripped of its outer layers of stars and gas by a nearby larger galaxy.
This illustration shows a dwarf galaxy in the throes of transitioning to an ultra-compact dwarf galaxy as it’s stripped of its outer layers of stars and gas by a nearby larger galaxy. Ultra-compact dwarf galaxies are among the densest stellar groupings in the Universe. Being more compact than other galaxies with similar mass, but larger than star clusters — the objects they most closely resemble — these mystifying objects have defied classification. The missing piece to this puzzle has been a lack of sufficient transitional, or intermediate objects to study. A new galaxy survey, however, fills in these missing pieces to show that many of these enigmatic objects are likely formed from the destruction of dwarf galaxies. NOIRLab/NSF/AURA/M. Zamani

“Our results provide the most complete picture of the origin of this mysterious class of galaxy that was discovered nearly 25 years ago,” said one of the researchers, NOIRLab astronomer Eric Peng in a statement. “Here we show that 106 small galaxies in the Virgo cluster have sizes between normal dwarf galaxies and UCDs, revealing a continuum that fills the ‘size gap’ between star clusters and galaxies.”

While astronomers did predict that dwarf galaxies could become UCDs, they hadn’t observed many cases of one transforming into the other. So this study looked for these “missing links” to see how this transition occurred. They found that these in-between galaxies were most often located near larger galaxies, which stripped away stars and gas from the small dwarf galaxies to leave a UCD behind.

“Once we analyzed the Gemini observations and eliminated all the background contamination, we could see that these transition galaxies existed almost exclusively near the largest galaxies. We immediately knew that environmental transformation had to be important,” explained lead author Kaixiang Wang of Peking University.

These objects were spotted using data from sky surveys, which was followed up using observations from Gemini North. That allowed the researchers to pick out the small dwarf galaxies from the many background galaxies visible in the sky.

“It’s exciting that we can finally see this transformation in action,” said Peng. “It tells us that many of these UCDs are visible fossil remnants of ancient dwarf galaxies in galaxy clusters, and our results suggest that there are likely many more low-mass remnants to be found.”

The research is published in the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers spot the shiniest exoplanet ever discovered
An artist impression of exoplanet LTT9779b orbiting its host star.

When you look up at the night sky you see mostly stars, not planets -- and that's simply because planets are so much smaller and dimmer than stars. But you can see planets in our solar system, like Venus, which is one of the brightest objects in the night sky. Due to its thick, dense atmosphere, Venus reflects 75% of the sun's light, making it shine brightly. Recently, though, astronomers discovered a planet that reflects even more of its star's light, making it the shiniest exoplanet ever found.

Exoplanet LTT9779 b reflects 80% of the light from its star, which it orbits very close to. That makes it extremely hot, and researchers believe that the planet is covered in clouds of silicate and liquid metal, which is what makes it so reflective.

Read more
This exoplanet is over 2,000-degrees Celsius, has vaporized metal in its atmosphere
This artist impression illustrates how astronomers using the Gemini North telescope, one half of the International Gemini Observatory operated by NSF’s NOIRLab, have made multiple detections of rock-forming elements in the atmosphere of a Jupiter-sized exoplanet, WASP-76b. The so-called “hot Jupiter” is perilously close to its host star, which is heating the planet’s atmosphere to astounding temperatures and vaporized rock-forming elements such as magnesium, calcium and iron, providing insight into how our own Solar System formed.

Astronomers have studied a strange, puffy, scorching-hot planet located 600 light-years away, and have seen elements that would normally form rocks, but are so hot that they have vaporized into the atmosphere.

The planet, named WASP-76b, is around the mass of Jupiter, but orbits its star 12 times closer than Mercury is to the sun. Being so close, its atmosphere its heated to a scorching 2,000- degrees Celsius, which makes it puff up to a large size that's six times the volume of Jupiter. These high temperatures also give astronomers the opportunity to observe elements that would normally be hard to identify in the atmosphere of a gas giant.

Read more
Gemini North telescope’s chipped mirror has been repaired
Gemini North, part of the International Gemini Observatory operated by NSF’s NOIRLab, is back observing the night sky following the repair and refurbishment of its primary mirror. The telescope’s debut observation captured the supernova dubbed SN 2023ixf (lower left), which was discovered on 19 May by Japanese astronomer Koichi Itagaki. This dazzling point of light, the closest supernova seen in the past five years, is located along one of the spiral arms of the Pinwheel Galaxy (Messier 101).

Modern telescopes are huge and complex installations. They may be either an array of many smaller dishes or a single giant dish, but in either case they are equipped with delicate mirrors, as well as observation instruments, controls for pointing the telescope in the required direction, and electronic systems for recording data. That means that these large installations are vulnerable to hardware failures, such as the collapse of the famous Arecibo Observatory, which was catastrophically damaged due to a cable snapping in 2020.

The large Gemini North telescope, run by the National Science Foundation (NSF)'s NOIRLab and located on the Maunakea volcano on the island of Hawai‘i, suffered damage last year when the telescope's primary mirror was chipped. According to NSF, "[w]hile moving the primary mirror in preparation for stripping its reflective protected silver coating, it contacted an earthquake restraint on the facility’s wash cart, chipping the edge."

Read more