Skip to main content

How to spot a habitable exoplanet by investigating its core

UBCO’s Brendan Dyck is using his geology expertise about planet formation to help identify other planets that might support life.
UBCO’s Brendan Dyck is using his geology expertise about planet formation to help identify other planets that might support life. NASA/Goddard Space Flight Center

In the last decade, we’ve been able to peer out beyond the solar system and to discover planets in systems beyond our own, discovering over 4,000 exoplanets in total. The next challenge to understand these distant worlds is to learn about whether they might be habitable, as many will likely be outside the habitable zone in which liquid water could be present on their surfaces.

Now, new research aims to go beyond the concept of a habitable zone and to understand the habitability of exoplanets based on the geology of how planets are formed.

“We typically hope to find these planets in the so-called ‘goldilocks’ or habitable zone, where they are the right distance from their stars to support liquid water on their surfaces,” lead author Brendan Dyck, assistant professor of geology at the University of British Colombia, said in a statement.

But his research aims to go further. “Just because a rocky planet can have liquid water doesn’t mean it does,” he explained. “Take a look right in our own solar system. Mars is also within the habitable zone and although it once supported liquid water, it has long since dried up.”

A big aim for many exoplanet researchers is to find rocky planets similar in composition and size to Earth. “The discovery of any planet is pretty exciting, but almost everyone wants to know if there are smaller Earth-like planets with iron cores,” Dyck said.

To understand planets’ cores, the team looked for clues from planetary formation. Rocky Earth-like planets with iron cores typically have a similar proportion of iron to the star which they orbit, but how much of this iron is in the core versus in the mantle can vary. It is this core versus mantle issue which can determine the presence of water and whether a planet will have plate tectonics, which can be a key determinate of habitability.

“As the planet forms, those with a larger core will form thinner crusts, whereas those with smaller cores form thicker iron-rich crusts like Mars,” he explained. This knowledge of geology can be applied to planets outside our solar system to help narrow down potential candidates for habitable exoplanets.

“Our findings show that if we know the amount of iron present in a planet’s mantle, we can predict how thick its crust will be and, in turn, whether liquid water and an atmosphere may be present,” he said. “It’s a more precise way of identifying potential new Earth-like worlds than relying on their position in the habitable zone alone.”

The research is published in the Astrophysical Journal Letters.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
How to watch the Quadrantid meteor shower hit its peak tonight
An image from the Quadrantid meteor shower.

Tonight will see the peak of the Quadrantid meteor shower, one of the lesser-known meteor showers of the year. It won't be as big or bright as some of the more famous showers like the Geminids or the Leonids, but it's still a great excuse to head out and do some stargazing to celebrate the new year.

If you'd like to check out this event, we have advice on how to watch the shower in person -- or a livestream option for those who fancy seeing the sights without venturing out into the cold.
What is the Quadrantid meteor shower?
An image from the Quadrantid meteor shower. NASA

Read more
Astronomers spot rare star system with six planets in geometric formation
Orbital geometry of HD110067: Tracing a link between two neighbour planets at regular time intervals along their orbits, creates a pattern unique to each couple. The six planets of the HD110067 system together create a mesmerising geometric pattern due to their resonance-chain.

Astronomers have discovered a rare star system in which six planets orbit around one star in an elaborate geometrical pattern due to a phenomenon called orbital resonance. Using both NASA's Transiting Exoplanet Survey Satellite (TESS) and the European Space Agency's (ESA) CHaracterising ExOPlanet Satellite (CHEOPS), the researchers have built up a picture of the beautiful, but complex HD110067 system, located 100 light-years away.

The six planets of the system orbit in a pattern whereby one planet completes three orbits while another does two, and one completes six orbits while another does one, and another does four orbits while another does three, and so one. The six planets form what is called a "resonant chain" where each is in resonance with the planets next to it.

Read more
How astronomers used James Webb to detect methane in the atmosphere of an exoplanet
An artists rendering of a blue and white exoplanet known as WASP-80 b, set on a star-studded black background. Alternating horizontal layers of cloudy white, grey and blue cover the planets surface. To the right of the planet, a rendering of the chemical methane is depicted with four hydrogen atoms bonded to a central carbon atom, representing methane within the exoplanet's atmosphere. An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system.

One of the amazing abilities of the James Webb Space Telescope is not just detecting the presence of far-off planets, but also being able to peer into their atmospheres to see what they are composed of. With previous telescopes, this was extremely difficult to do because they lacked the powerful instruments needed for this kind of analysis, but scientists using Webb recently announced they had made a rare detection of methane in an exoplanet atmosphere.

Scientists studied the planet WASP-80 b using Webb's NIRCam instrument, which is best known as a camera but also has a slitless spectroscopy mode which allows it to split incoming light into different wavelengths. By looking at which wavelengths are missing because they have been absorbed by the target, researchers can tell what an object -- in this case, a planetary atmosphere -- is composed of.

Read more