Skip to main content

See four dwarf galaxies merging into one in this Hubble image

An image from the Hubble Space Telescope shared this week by NASA shows an unusual interaction of four dwarf galaxies. There are two small galaxies which are so close together that they look like one object, called NGC 1741, located at the top of the image. Then there is another cigar-shaped galaxy close by to the right, and a fourth galaxy in the bottom left which is connected to the other three by a stream of young stars.

Together, the four galaxies make up a set called the Hickson Compact Group 31, or HCG 31. The group is located 166 million light-years away from Earth, which is relatively close for seeing interacting dwarf galaxies. The galaxies are currently so close together, at within 75,000 light-years of each other, that all four of them would fit within the Milky Way.

This newly revised NASA Hubble Space Telescope image of the Hickson Compact Group 31 (HCG 31) of galaxies highlights streams of star-formation as four dwarf galaxies interact.
This newly revised NASA Hubble Space Telescope image of the Hickson Compact Group 31 (HCG 31) of galaxies highlights streams of star-formation as four dwarf galaxies interact. Image used with permission by copyright holder

This image is a revised version of an image originally released in 2010, which has been processed to bring out the star-forming regions in the group. As gravitational forces from the mass of the galaxies interact, this spurs the formation of stars, which glow blue when they are young.

Recommended Videos

Dwarf galaxy mergers are typically seen very far away, meaning they are very old, but this group is comparatively young. Astronomers were able to use the data from Hubble to wind back their positions and see when the galaxies started interacting, a few hundred million years ago, and predict when they will eventually merge.

Please enable Javascript to view this content

“This is a clear example of a group of galaxies on their way toward a merger because there is so much gas that is going to mix everything up,” said lead author of the study, Sarah Gallagher, in a statement when the image was released.

“The galaxies are relatively small, comparable in size to the Large Magellanic Cloud, a satellite galaxy of our Milky Way. Their velocities, measured from previous studies, show that they are moving very slowly relative to each other, just 134,000 miles an hour (60 kilometers a second). So it’s hard to imagine how this system wouldn’t wind up as a single elliptical galaxy in another billion years.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See the majestic Southern Pinwheel Galaxy in this Dark Energy Camera image
Twelve million light-years away lies the galactic masterpiece Messier 83, also known as the Southern Pinwheel Galaxy. Its swirling spiral arms display a high rate of star formation and host six detected supernovae. This image was captured with the Department of Energy-fabricated Dark Energy Camera, mounted on the U.S. National Science Foundation Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF NOIRLab.

An image from the Dark Energy Camera (DECam) shows a striking celestial sight: the Southern Pinwheel Galaxy, a gorgeous face-on galaxy that is one of the closest and brightest barred spiral galaxies in the sky. Also known as Messier 83, the galaxy is bright enough that it can even be seen with binoculars, but this image from a 4-meter Víctor M. Blanco Telescope shows the kind of stunning detail that can be picked out using a powerful instrument.

"This image shows Messier 83’s well-defined spiral arms, filled with pink clouds of hydrogen gas where new stars are forming," explains NOIRLab from the National Science Foundation, which released the image. "Interspersed amongst these pink regions are bright blue clusters of hot, young stars whose ultraviolet radiation has blown away the surrounding gas. At the galaxy’s core, a yellow central bulge is composed of older stars, and a weak bar connects the spiral arms through the center, funneling gas from the outer regions toward the core. DECam’s high sensitivity captures Messier 83’s extended halo, and myriad more distant galaxies in the background."

Read more
Feast your eyes on 10 years of Hubble images of Jupiter, Saturn, Uranus, Neptune
This is a montage of NASA/ESA Hubble Space Telescope views of our solar system's four giant outer planets: Jupiter, Saturn, Uranus, and Neptune, each shown in enhanced color. The images were taken over nearly 10 years, from 2014 to 2024.

While the Hubble Space Telescope might be most famous for its images of beautiful and far-off objects like nebulae or distant galaxies, it also takes images of objects closer to home, including the planets right here in our own solar system. For the past 10 years, Hubble has been studying the outer planets in a project called OPAL (Outer Planet Atmospheres Legacy), capturing regular images of each of the four outer planets so scientists can study their changes over time.

The planets Jupiter, Saturn, Uranus, and Neptune are different in many ways from Earth, as they are gas giants and ice giants rather than rocky planets. But they do have some similar phenomena, such as weather that regularly changes, including epic events like storms that are so large they can be seen from space. Jupiter's Great Red Spot, for example, the big orange-red eye shape that is visible on most images of the planet, is an enormous storm larger than the width of the entire Earth and which has been raging for centuries.

Read more
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more