Skip to main content

See where stars are born and where they die in the dwarf galaxy Sextans B

Sextans B is an irregular dwarf galaxy, meaning that it is irregularly shaped and smaller than our galaxy, the Milky Way. It lies around 4.5 million light-years from Earth and is located in the constellation Sextans in the southern sky. Captured with the Nicholas U. Mayall 4-meter Telescope, this image of Sextans B features red-colored star-forming regions near the galaxy’s center. Surrounding the galaxy are several bright stars that are located much closer to us in our galaxy, identified by the crisscross patterns created by light interacting with the structure of the telescope, as well as numerous fuzzy-looking background galaxies that appear small because they are much farther away than Sextans B.
Captured with the Nicholas U. Mayall 4-meter Telescope, this image of Sextans B features red-colored star-forming regions near the galaxy’s center. Surrounding the galaxy are several bright stars that are located much closer to us in our galaxy, identified by the crisscross patterns created by light interacting with the structure of the telescope, as well as numerous fuzzy-looking background galaxies that appear small because they are much farther away than Sextans B. KPNO/NOIRLab/NSF/AURA Data obtained and processed by: P. Massey (Lowell Obs.), G. Jacoby, K. Olsen, & C. Smith (AURA/NSF) Image processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani (NSF’s NOIRLab) & D. de Martin (NSF’s NOIRLab)

Galaxies in our universe come in a range of sizes, like the enormous IC 1101 which is 50 times the size of the Milky Way and is estimated to be up to 8 million light-years across — hence why it’s known as the Godzilla Galaxy. On the other end of the scale, you can find relatively tiny galaxies which can be as small as just 200 light-years across, like the teeny Segue 2.

But the fact a galaxy is tiny doesn’t mean it’s not of scientific interest, as this image of the dwarf galaxy Sextans B shows. Located 4.5 million light-years away and with a mass equivalent to 200 million times the mass of the sun, the dwarf galaxy is only a few thousand light-years in diameter. But despite this, it hosts a whole range of astronomical phenomena squeezed into its relatively diminutive size.

The most obvious features are the glowing red clouds near the center of the image which are composed of hydrogen. These are the birthplaces of stars, where the clouds clump together and eventually create a gravitational pull strong enough to form a new star.

The galaxy contains not only the nurseries of stars but also their graveyards, in the form of planetary nebulae. Sextans B is notable for being among the smallest galaxies to contain planetary nebulae, which are beautiful ring-like structures that are formed when a red giant star approaches the end of its life, though they aren’t visible in the image. As a star runs out of fuel, it throws off its outer layers which form elaborate structures in space.

The image was taken using the Nicholas U. Mayall 4-meter Telescope at Kitt Peak National Observatory, and as well as Sextans B it shows many other galaxies in the background which appear fuzzy, as well as stars in our galaxy which are located much closer to us and so shine brightly.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures swirls of dust and gas in nearby galaxies
Scientists are getting their first look with the NASA/ESA/CSA James Webb Space Telescope’s powerful resolution at how the formation of young stars influences the evolution of nearby galaxies. The spiral arms of NGC 7496, one of a total of 19 galaxies targeted for study by the Physics at High Angular resolution in Nearby Galaxies (PHANGS) collaboration, are filled with cavernous bubbles and shells overlapping one another in this image from Webb’s Mid-Infrared Instrument (MIRI). These filaments and hollow cavities are evidence of young stars releasing energy and, in some cases, blowing out the gas and dust of the interstellar medium they plough into.

The James Webb Space Telescope is helping astronomers to peer into nearby galaxies and see the elaborate structures of dust and gas which are created by and necessary for star formation.

The Physics at High Angular resolution in Nearby Galaxies, or PHANGS project, involves using data from different telescopes to look at galaxies that are close to us. By using telescopes such as the Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array, researchers can collect data in different wavelengths such as the visible light and radio wavelengths.

Read more
Amateur astronomer spots dwarf galaxy that computers missed
Right in the middle of this image taken with the NASA/ESA Hubble Space Telescope, nestled among a smattering of distant stars and even more distant galaxies, lies the newly discovered dwarf galaxy known as Donatiello II. If you can’t quite discern Donatiello II’s clump of faint stars in this image, then you are in good company. Donatiello II is one of three newly discovered galaxies. All three were missed by an algorithm designed to search astronomical data for potential galaxy candidates. Even the best algorithms have their limitations when it comes to distinguishing very faint galaxies from individual stars and background noise. In such challenging situations, identification must be done the old-fashioned way – by a dedicated human trawling through the data themselves.

As machine learning approaches get more and more sophisticated, they are increasingly used in astronomy for difficult tasks like spotting dim and distant galaxy clusters. It can be tremendously helpful to have computers search through astronomical data to look for particular objects as they can process a huge amount of data -- however, there are some judgments that still require the human touch.

This week's image from the Hubble Space Telescope shows an object that was spotted by a human even after it had been missed by a computer algorithm. The dwarf galaxy Donatiello II is very faint and hard to pick out from the background behind it, but an amateur astronomer was able to point it out.

Read more
Tiny dwarf planet Quaoar has a mysterious ring
An artist’s impression of the dwarf planet Quaoar and its ring. Quaoar’s moon Weywot is shown on the left.

The European Space Agency's CHEOPS telescope usually searches for planets outside our solar system, but recently it made a discovery closer to home: a large ring around the dwarf planet Quaoar which has researchers intrigued.

An artist’s impression of the dwarf planet Quaoar and its ring. Quaoar’s moon Weywot is shown on the left. Quaoar’s ring was discovered through a series of observations that took place between 2018 to 2021. Using a collection of ground-based telescopes, and ESA’s space-based telescope Cheops, astronomers watched as Quaoar crossed in front of a succession of distant stars, briefly blocking out their light as it passed. ESA; Acknowledgement: Work performed by ATG under contract for ESA

Read more