Skip to main content

See where stars are born and where they die in the dwarf galaxy Sextans B

Sextans B is an irregular dwarf galaxy, meaning that it is irregularly shaped and smaller than our galaxy, the Milky Way. It lies around 4.5 million light-years from Earth and is located in the constellation Sextans in the southern sky. Captured with the Nicholas U. Mayall 4-meter Telescope, this image of Sextans B features red-colored star-forming regions near the galaxy’s center. Surrounding the galaxy are several bright stars that are located much closer to us in our galaxy, identified by the crisscross patterns created by light interacting with the structure of the telescope, as well as numerous fuzzy-looking background galaxies that appear small because they are much farther away than Sextans B.
Captured with the Nicholas U. Mayall 4-meter Telescope, this image of Sextans B features red-colored star-forming regions near the galaxy’s center. Surrounding the galaxy are several bright stars that are located much closer to us in our galaxy, identified by the crisscross patterns created by light interacting with the structure of the telescope, as well as numerous fuzzy-looking background galaxies that appear small because they are much farther away than Sextans B. KPNO/NOIRLab/NSF/AURA Data obtained and processed by: P. Massey (Lowell Obs.), G. Jacoby, K. Olsen, & C. Smith (AURA/NSF) Image processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani (NSF’s NOIRLab) & D. de Martin (NSF’s NOIRLab)

Galaxies in our universe come in a range of sizes, like the enormous IC 1101 which is 50 times the size of the Milky Way and is estimated to be up to 8 million light-years across — hence why it’s known as the Godzilla Galaxy. On the other end of the scale, you can find relatively tiny galaxies which can be as small as just 200 light-years across, like the teeny Segue 2.

But the fact a galaxy is tiny doesn’t mean it’s not of scientific interest, as this image of the dwarf galaxy Sextans B shows. Located 4.5 million light-years away and with a mass equivalent to 200 million times the mass of the sun, the dwarf galaxy is only a few thousand light-years in diameter. But despite this, it hosts a whole range of astronomical phenomena squeezed into its relatively diminutive size.

The most obvious features are the glowing red clouds near the center of the image which are composed of hydrogen. These are the birthplaces of stars, where the clouds clump together and eventually create a gravitational pull strong enough to form a new star.

The galaxy contains not only the nurseries of stars but also their graveyards, in the form of planetary nebulae. Sextans B is notable for being among the smallest galaxies to contain planetary nebulae, which are beautiful ring-like structures that are formed when a red giant star approaches the end of its life, though they aren’t visible in the image. As a star runs out of fuel, it throws off its outer layers which form elaborate structures in space.

The image was taken using the Nicholas U. Mayall 4-meter Telescope at Kitt Peak National Observatory, and as well as Sextans B it shows many other galaxies in the background which appear fuzzy, as well as stars in our galaxy which are located much closer to us and so shine brightly.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble image of the week shows an unusual jellyfish galaxy
The jellyfish galaxy JO206 trails across this image from the NASA/ESA Hubble Space Telescope, showcasing a colorful star-forming disk surrounded by a pale, luminous cloud of dust. A handful of foreground bright stars with crisscross diffraction spikes stands out against an inky black backdrop at the bottom of the image. JO206 lies over 700 million light-years from Earth in the constellation Aquarius.

This week's image from the Hubble Space Telescope shows an unusual type of galaxy named for its aquatic look-alike: a jellyfish.

The jellyfish galaxy JO206 is shown below in an image taken using Hubble's Wide Field Camera 3 instrument. Located 700 million light-years away, in the constellation of Aquarius, this image of the galaxy shows both the bright center of the galaxy and its long tendrils reaching out toward the bottom right. It is these tendrils that give jellyfish galaxies their names, and they are formed through a process called ram pressure stripping.

Read more
Image of darkness and light shows new stars being born in Lupus 3 nebula
The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds.

A gorgeous new image of a nebular 500 light-years away gives a peek into the process of star formation.

This image from the Dark Energy Camera shows both the dark cloud of Lupus 3 and the shining bright young stars of the nebula Bernes 149. The dark cloud here is essential to the star formation process, as it is a collection of gas and dust which provides the building blocks for new stars to be born. Known as a dark nebula because of its density, Lupus 3 obscures the light of the stars behind it, giving the impression of a swath of black across the starry sky.

Read more
James Webb captures a stunning image of two galaxies merging
Shining like a brilliant beacon amidst a sea of galaxies, Arp 220 lights up the night sky in this view from NASA’s James Webb Space Telescope. Actually two spiral galaxies in the process of merging, Arp 220 glows brightest in infrared light, making it an ideal target for Webb. It is an ultra-luminous infrared galaxy (ULIRG) with a luminosity of more than a trillion suns. In comparison, our Milky Way galaxy has a much more modest luminosity of about ten billion suns.

The James Webb Space Telescope has captured a gorgeous image of a dramatic cosmic event: two galaxies colliding. The two spiral galaxies are in the process of merging, and are glowing brightly in the infrared wavelength in which James Webb operates, shining with the light of more than a trillion suns.

It is not uncommon for two (or more) galaxies to collide and merge, but the two pictured in this image are giving off particularly bright infrared light. The pair has a combined name, Arp 220, as they appear as a single object when viewed from Earth. Known as an ultraluminous infrared galaxy (ULIRG), Arp 220 glows far more brightly than a typical spiral galaxy like our Milky Way.

Read more