Skip to main content

A baby star’s energetic outburst captured by Hubble

This week’s image from the Hubble Space Telescope shows the dramatic and energetic jets given off by a young star, forming a wispy structure called a Herbig-Haro object. The image shows object HH34, located 1,250 light-years away in the Orion Nebula. The Orion Nebula is a site of active star formation and as it is bright enough to be seen even by the naked eye, it is often studied to learn about the formation of stars.

A Herbig-Haro object is formed when a young, particularly energetic star ejects particles of ionized gas in epic jets. These jets typically eject from opposite sides of the star, illuminating gas and dust around them which glows in beautiful colors. These jets are so powerful they can travel at hundreds of miles per second, meaning they spread far beyond the star and form these long, thin shapes which can be seen from great distances.

An energetic outburst from an infant star streaks across this image from the NASA/ESA Hubble Space Telescope.
An energetic outburst from an infant star streaks across this image from the NASA/ESA Hubble Space Telescope. This stellar tantrum – produced by an extremely young star in the earliest phase of formation – consists of an incandescent jet of gas traveling at supersonic speeds. As the jet collides with material surrounding the still-forming star, the shock heats this material and causes it to glow. ESA/Hubble & NASA, B. Nisini

These objects can change rapidly over short periods of time as well, just as this one has done. “Herbig–Haro objects are seen to evolve and change significantly over just a few years,” Hubble scientists write. “This particular object, called HH34, was previously captured by Hubble between 1994 and 2007, and again in glorious detail in 2015.”

If you look at the previous image of HH34, captured in 2015, you can see how the object has changed in the handful of years since then. Most astronomical objects like stars tend to change over periods of thousands of years or more, so to see an object changing so rapidly is a rarity.

By looking at objects like HH34 astronomers can learn about the formation of stars and the jets of energy they can give off. This topic will be studied in more depth using the James Webb Space Telescope, which is able to look through the clouds of dust surrounding newly-born stars using its infrared instruments, to observe the newborns up close.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Hear the otherworldly sounds of interacting galaxies with this Hubble sonification
This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140.

When two different galaxies get close enough together that they begin interacting, they are sometimes given a shared name. That's the case with a newly released image from the Hubble Space Telescope that shows two galaxies, NGC 274 and NGC 275, which are together known as Arp 140. not only is there a new image of the pair, but there's also a sonification available so you can hear the image as well as see it.

This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140. NASA/ESA/R. Foley (University of California - Santa Cruz)/Processing: Gladys Kober (NASA/Catholic University of America)

Read more