Skip to main content

A baby star’s energetic outburst captured by Hubble

This week’s image from the Hubble Space Telescope shows the dramatic and energetic jets given off by a young star, forming a wispy structure called a Herbig-Haro object. The image shows object HH34, located 1,250 light-years away in the Orion Nebula. The Orion Nebula is a site of active star formation and as it is bright enough to be seen even by the naked eye, it is often studied to learn about the formation of stars.

A Herbig-Haro object is formed when a young, particularly energetic star ejects particles of ionized gas in epic jets. These jets typically eject from opposite sides of the star, illuminating gas and dust around them which glows in beautiful colors. These jets are so powerful they can travel at hundreds of miles per second, meaning they spread far beyond the star and form these long, thin shapes which can be seen from great distances.

Related Videos
An energetic outburst from an infant star streaks across this image from the NASA/ESA Hubble Space Telescope.
An energetic outburst from an infant star streaks across this image from the NASA/ESA Hubble Space Telescope. This stellar tantrum – produced by an extremely young star in the earliest phase of formation – consists of an incandescent jet of gas traveling at supersonic speeds. As the jet collides with material surrounding the still-forming star, the shock heats this material and causes it to glow. ESA/Hubble & NASA, B. Nisini

These objects can change rapidly over short periods of time as well, just as this one has done. “Herbig–Haro objects are seen to evolve and change significantly over just a few years,” Hubble scientists write. “This particular object, called HH34, was previously captured by Hubble between 1994 and 2007, and again in glorious detail in 2015.”

If you look at the previous image of HH34, captured in 2015, you can see how the object has changed in the handful of years since then. Most astronomical objects like stars tend to change over periods of thousands of years or more, so to see an object changing so rapidly is a rarity.

By looking at objects like HH34 astronomers can learn about the formation of stars and the jets of energy they can give off. This topic will be studied in more depth using the James Webb Space Telescope, which is able to look through the clouds of dust surrounding newly-born stars using its infrared instruments, to observe the newborns up close.

Editors' Recommendations

An enormous galaxy cluster warps spacetime in this Hubble image
A massive galaxy cluster in the constellation Cetus dominates the centre of this image from the NASA/ESA Hubble Space Telescope. This image is populated with a serene collection of elliptical and spiral galaxies, but galaxies surrounding the central cluster — which is named SPT-CL J0019-2026 — appear stretched into bright arcs, as if distorted by a gargantuan magnifying glass. This cosmic contortion is called gravitational lensing, and it occurs when a massive object like a galaxy cluster has a sufficiently powerful gravitational field to distort and magnify the light from background objects.

Every week, scientists using the Hubble Space Telescope share an image from this beloved piece of space technology, and this week's image shows a vital astronomical phenomenon in action. While space telescopes can observe very far-off objects if they are bright enough, there is still a lot of the universe that is too far away to observe -- which is why researchers make use of a natural occurrence called gravitational lensing.

Gravitational lensing happens when an object like a galaxy or galaxy cluster has so much mass that it noticeably warps spacetime. Everything with mass bends spacetime somewhat, but usually this effect is so small as to be effectively invisible. But when the object is something with as much mass as a large galaxy or even a collection of galaxies, then this warping can be significant enough for us to observe it.

Read more
Three galaxies are in the process of merging in this Hubble image
A spectacular trio of merging galaxies in the constellation Boötes takes center stage in this image from the NASA/ESA Hubble Space Telescope. These three galaxies are set on a collision course and will eventually merge into a single larger galaxy, distorting one another’s spiral structure through mutual gravitational interaction in the process. An unrelated foreground galaxy appears to float serenely near this scene, and the smudged shapes of much more distant galaxies are visible in the background.

This week's image from the Hubble Space Telescope shows a dramatic collision of three different galaxies. The trio, located in the Boötes constellation, are in the process of merging and will eventually form one single large galaxy.

A spectacular trio of merging galaxies in the constellation Boötes takes center stage in this image from the NASA/ESA Hubble Space Telescope. These three galaxies are set on a collision course and will eventually merge into a single larger galaxy, distorting one another’s spiral structure through mutual gravitational interaction in the process. An unrelated foreground galaxy appears to float serenely near this scene, and the smudged shapes of much more distant galaxies are visible in the background. ESA/Hubble & NASA, M. Sun

Read more
Hubble is investigating mysterious ‘spokes’ in Saturn’s rings
NASA's Hubble Space Telescope has observation time devoted to Saturn each year, thanks to the Outer Planet Atmospheres Legacy (OPAL) program, and the dynamic gas giant planet always shows us something new. This latest image heralds the start of Saturn's "spoke season" with the appearance of two smudgy spokes in the B ring, on the left in the image.

Saturn is famous for its beautiful rings, but these rings have a strange feature: "spokes" which appear intermittently. These spots in the rings can be light or dark and can look like blobs or like lines stretching radially outward from the planet, and they appear in a regular cycle related to the planet's equinox. Now, the Hubble Space Telescope has the opportunity to study these oddities of the rings in more detail and researchers hope they can learn more about what causes these features.

NASA's Hubble Space Telescope has observation time devoted to Saturn each year, thanks to the Outer Planet Atmospheres Legacy (OPAL) program, and the dynamic gas giant planet always shows us something new. This latest image heralds the start of Saturn's "spoke season" with the appearance of two smudgy spokes in the B ring, on the left in the image. SCIENCE: NASA, ESA, Amy Simon (NASA-GSFC) IMAGE PROCESSING: Alyssa Pagan (STScI)

Read more