Skip to main content

Clouds on Neptune might be created by the sun, strangely enough

As distant as it is, orbiting nearly 3 million miles from the sun, we know a surprising amount about the atmosphere and weather conditions on Neptune. Dramatic storms have been observed there including by the Voyager 2 spacecraft which passed by in the 1980s, which saw dark spots surrounded by white clouds of frozen methane. However, astronomers are now faced with a puzzle about these storms and why they seem to be appearing and disappearing over time.

Researchers recently used Hubble and other telescopes to observe Neptune’s clouds to investigate a mystery: why sometimes the planet had plentiful clouds in its atmosphere and at other times had barely any. In 2019, the level of clouds dropped dramatically and it wasn’t clear why.

Recommended Videos

“Even now, four years later, the most recent images we took this past June still show the clouds haven’t returned to their former levels,” said lead researcher Erandi Chavez of the Center for Astrophysics | Harvard-Smithsonian in a statement. “This is extremely exciting and unexpected, especially since Neptune’s previous period of low cloud activity was not nearly as dramatic and prolonged.”

This sequence of Hubble Space Telescope images chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle – where the Sun's level of activity rhythmically rises and falls over an 11-year period.
This sequence of Hubble Space Telescope images chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle – where the Sun’s level of activity rhythmically rises and falls over an 11-year period. NASA, ESA, Erandi Chavez (UC Berkeley), Imke de Pater (UC Berkeley)

The team found a link between the amounts of clouds and the solar cycle, which is an 11-year pattern of activity that the sun goes through. At certain times the number of sunspots and solar flares from the sun increases, which sends more ultraviolet (UV) radiation out into the solar system. This radiation seems to affect the clouds on Neptune, as the research shows that over 30 years of data more clouds are present two years after the peak of the solar cycle. The researchers think that this two-year lag is due to the chemical processes which begin in the planet’s atmosphere and need time to produce clouds.

“These remarkable data give us the strongest evidence yet that Neptune’s cloud cover correlates with the Sun’s cycle,” said senior researcher Imke de Pater. “Our findings support the theory that the Sun’s UV rays, when strong enough, may be triggering a photochemical reaction that produces Neptune’s clouds.”

The researchers want to continue tracking the planet’s cloud activity to understand how the sun affects the clouds, and whether the clouds will reappear from their current low levels.

“It’s fascinating to be able to use telescopes on Earth to study the climate of a world more than 2.5 billion miles away from us,” said fellow researcher Carlos Alvarez of the Keck Observatory. “Advances in technology and observations have enabled us to constrain Neptune’s atmospheric models, which are key to understanding the correlation between the ice giant’s climate and the solar cycle.”

The research is published in the journal Icarus.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble captures a sparkling cloud galaxy located right next door
The galaxy ESO 300-16 looms over this image from the NASA/ESA Hubble Space Telescope.

An image from the Hubble Space Telescope shared this week by NASA shows a nearby galaxy, ESO 300-16. Unlike our Milky Way, which is a type called a spiral galaxy with a clear central bulge and defined spiral arms reaching out from its center, this neighborhood galaxy is loose and diffuse, looking more like a spattering of stars than anything with a clear structure. Hubble scientists describe it as a "sparkling cloud."

The galaxy is a type called an irregular galaxy, due to its lack of clear shape. Its stars clump together in a soft bubble form, and it is located nearly 29 million light-years away in the direction of the constellation Eridanus.

Read more
Hubble scientists create tool for erasing satellite trails from images
This image captures the streak of an Earth-orbiting artificial satellite crossing Hubble's field of view during an observation of "The Mice" interacting galaxies (NGC 4676). A typical satellite trail is very thin and will affect less than 0.5% of a single Hubble exposure. Though in this case the satellite overlaps a portion of the target galaxy, the observation quality is not affected. That's because multiple exposures are taken of the same target. And the satellite trail is not in other frames. Developers at the Space Telescope Science Institute in Baltimore, Maryland, have software that identifies the bad pixels from the satellite photobombing, the extent to which they affect the image, and then flags them. When flagged, scientists can recover the full field of view. Even as the number of satellites increases over the decade, these tools for cleaning the images will still be applicable.

With ever-increasing numbers of satellites in the sky, astronomers have repeatedly expressed worry over how these satellites could impact scientific research. Earlier this year, a study of Hubble Space Telescope observations showed how some images were being ruined by streaks of light coming from satellites -- and while only a small percentage of Hubble images were affected, the authors raised concerns that with the projected number of satellites set to explode in the next decade, the problem could become serious.

Now, astronomers at the Space Telescope Science Institute (STScI), which runs Hubble, have come up with a tool to deal with satellite streaks in Hubble images. "We developed a new tool to identify satellite trails that is an improvement over the previous satellite software because it is much more sensitive. So we think it will be better for identifying and removing satellite trails in Hubble images," said Dave Stark of STScI in a statement.

Read more
Our galactic companion, the Small Magellanic Cloud, sparkles in Hubble image
This image from the NASA/ESA Hubble Space Telescope captures a small portion of the Small Magellanic Cloud (SMC). The SMC is a dwarf galaxy and one of the Milky Way’s nearest neighbors, lying only about 200,000 light-years from Earth. It makes a pair with the Large Magellanic Cloud, and both objects are best seen from the Southern Hemisphere, but are visible from some northern latitudes as well.

Each week researchers from the Hubble Space Telescope share an image they have captured of a particular object or region in space. This week's Hubble image shows the Small Magellanic Cloud, or SMC, which is a satellite galaxy to our Milky Way.

The SMC is tiny compared to our galaxy, at just 7,000 light-years across compared to the approximately 100,000 light-years of the Milky Way, making it a type called a dwarf galaxy. It is also one of our nearest neighbors and a satellite galaxy of the Milky Way, meaning it is gravitationally bound to our galaxy. It can be seen with the naked eye, along with its companion the Large Magellanic Cloud, mostly visible from the southern hemisphere.

Read more