Skip to main content

Hubble sees the ghostly light of lost, wandering stars

When most people learn about the structure of the universe at school, the model is simple: planets rotate around stars, and stars cluster together in galaxies, of which there are many in the universe. You might even have learned that galaxies can often group together by the thousand in enormous galaxy clusters.

However, there are both rogue planets and rogue stars out there, that wander the universe unattached to larger structures. Recently, the Hubble Space Telescope has been used to investigate wandering stars that aren’t tied to any particular galaxy — and found that these wanderers are giving off a ghostly haze of light that can be seen in galaxy clusters.

These are Hubble Space Telescope images of two massive clusters of galaxies named MOO J1014+0038 (left panel) and SPT-CL J2106-5844 (right panel). The artificially added blue color is translated from Hubble data that captured a phenomenon called intracluster light. This extremely faint glow traces a smooth distribution of light from wandering stars scattered across the cluster. Billions of years ago the stars were shed from their parent galaxies and now drift through intergalactic space.
These are Hubble Space Telescope images of two massive clusters of galaxies named MOO J1014+0038 (left panel) and SPT-CL J2106-5844 (right panel). The artificially added blue color is translated from Hubble data that captured a phenomenon called intracluster light. This extremely faint glow traces a smooth distribution of light from wandering stars scattered across the cluster. Billions of years ago the stars were shed from their parent galaxies and now drift through intergalactic space. SCIENCE: NASA, ESA, STScI, James Jee (Yonsei University) IMAGE PROCESSING: Joseph DePasquale (STScI)

The difficult question that astronomers have been pondering is how rogue stars become scattered throughout a galaxy cluster, as they were unsure whether the clusters pulled in the rogue stars long after they formed, or whether the stars were already present as the cluster formed around them. To answer this, a group used Hubble to look at intracluster light, which is the diffuse and very dim light seen around and within galaxy clusters that isn’t related to specific galaxies within the cluster.

In a new paper in the journal Nature, the researchers looked at 10 galaxy clusters and found that the level of intracluster light compared to total light from the cluster stayed constant, even for those clusters which are extremely far away and thus billions of years old. “This means that these stars were already homeless in the early stages of the cluster’s formation,” explained researcher James Jee of Yonsei University in Seoul, South Korea.

The fact that even long ago, stars were wandering through these clusters means that there must have been some mechanism creating homeless stars in the early universe which we don’t yet know about. “We don’t exactly know what made them homeless,” Jee said. “Current theories cannot explain our results, but somehow they were produced in large quantities in the early universe.”

One theory to explain this finding is that because early galaxies are very different from the galaxies we see today, they could have been more prone to let go of stars which then became wanderers. “In their early formative years, galaxies might have been pretty small and they bled stars pretty easily because of a weaker gravitational grasp,” Jee said. Studying these lost stars could also be used to understand dark matter, by providing a way to map dark matter distribution by looking at how the rogue stars are spread.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the weather patterns on a wild, super hot exoplanet
This is an artist’s impression of the exoplanet WASP 121-b, also known as Tylos. The exoplanet’s appearance is based on Hubble data of the object. Using Hubble observations, another team of scientists had previously reported the detection of heavy metals such as magnesium and iron escaping from the upper atmosphere of the ultra-hot Jupiter exoplanet, marking it as the first of such detection. The exoplanet is orbiting dangerously close to its host star, roughly 2.6% of the distance between Earth and the Sun, placing it on the verge of being ripped apart by its host star's tidal forces. The powerful gravitational forces have altered the planet's shape.

When it comes to understanding exoplanets, or planets outside our solar system, the big challenge is in not only finding these planets, but also understanding what they are like. And one of the biggest factors that scientists are interested in is whether an exoplanet has an atmosphere and, if so, what it is composed of. But, just like with weather here on Earth, exoplanet atmospheres aren't static. So the Hubble Space Telescope was recently used for an intriguing observation -- comparing data from an exoplanet atmosphere that had previously been observed, to see how it changed over time.

Hubble looked at planet WASP-121 b, an extreme planet that is so close to its star that a year there lasts just 30 hours. Its surface temperatures are over 3,000 Kelvins, or 5,000 degrees Fahrenheit, which researchers predict would lead to some wild weather phenomena. As it is such an extreme planet, WASP-121 b is well-known and has been observed by Hubble several times over the years, beginning in 2016.

Read more
Hubble snaps an image of dark spokes in Saturn’s rings
This photo of Saturn was taken by NASA's Hubble Space Telescope on October 22, 2023, when the ringed planet was approximately 850 million miles from Earth. Hubble's ultra-sharp vision reveals a phenomenon called ring spokes. Saturn's spokes are transient features that rotate along with the rings. Their ghostly appearance only persists for two or three rotations around Saturn. During active periods, freshly-formed spokes continuously add to the pattern.

The Hubble Space Telescope is investigating something strange about the beautiful rings around Saturn. You might picture Saturn's rings as perfectly smooth, but in fact, they have some strange dark spots that appear intermittently. These features, called spokes, look like dusty blots spread over the rings and appear for just a few rotations before disappearing again, with some periods having much more spoke activity than others.

These spokes were first observed over 40 years ago by the Voyager 2 spacecraft, but they continue to be something of a mystery. They seem to be linked to seasons on the planet, which are seven years long, and to the planet's magnetic field. A newly released image taken by Hubble in October this year shows the spokes as dark patches on the rings, observed as part of a program called Hubble's Outer Planets Atmospheres Legacy (OPAL), which tracks them as they move.

Read more
Hubble gets festive with a string of cosmic Christmas lights
The billion stars in galaxy UGC 8091 resemble a sparkling snow globe in this festive Hubble Space Telescope image from NASA and ESA (European Space Agency). The dwarf galaxy is approximately 7 million light-years from Earth in the constellation Virgo. It is considered an "irregular galaxy" because it does not have an orderly spiral or elliptical appearance. Instead, the stars that make up this celestial gathering look more like a brightly shining tangle of string lights than a galaxy.

Researchers using the Hubble Space Telescope are getting into the festive spirit with a holiday image showing a dwarf irregular galaxy called UGC 8091. Located 7 million light-years away in the constellation of Virgo, this region is a hotbed of star formation, with bright young stars illuminating the gas around them to create a sparkling mass reminiscent of Christmas lights.

It is designated an irregular galaxy because of its nonuniform shape, and a dwarf galaxy because of its small size. Unlike spiral galaxies, such as our Milky Way, or elliptical galaxies, which are smooth and have a elliptical shape, irregular galaxies can come in a variety of shapes. Often, these galaxies have been pulled into odd shapes due to gravitational forces, such as when two galaxies come close to each other and interact.

Read more