Skip to main content

Digital Trends may earn a commission when you buy through links on our site. Why trust us?

Largest ever group of lonely rogue planets discovered in Milky Way

Deep in the cold, dark emptiness of interstellar space, you can find some lonely planets roaming freely and not orbiting a star. Known as rogue planets, these objects are elusive and are rarely discovered due to being difficult to spot — but a new study has found the largest collection of rogue planets to date, located in a region of the Milky Way called the Upper Scorpius OB stellar association.

Finding rogue planets is hard because, unlike stars, planets are dim and give off very little light, and these tiny points have to be picked out from a background of bright stars. But an international team was able to spot this group of rogue planets by using a combination of both new observations and archival data from a large number of sources including telescopes of the European Southern Observatory, the Canada-France-Hawaii Telescope, and the Subaru Telescope. In total, the data they used added up to 80,000 wide-field images taken over 20 years of observations.

Artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background.
This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead, roaming freely on their own. ESO/M. Kornmesser

“We measured the tiny motions, the colors and luminosities of tens of millions of sources in a large area of the sky,” explained lead author Núria Miret-Roig. “These measurements allowed us to securely identify the faintest objects in this region.” Using this technique, the researchers found at least 70 rogue planets from the data. “We did not know how many to expect and are excited to have found so many,” said Miret-Roig.

Studying these rogue planets, or Free-Floating Planets (FFPs), in more detail could help us learn about planet composition and formation, according to project leader Hervé Bouy: “The FFPs we identified are also excellent targets for follow-up studies. In particular, they will be essential to study planetary atmospheres in the absence of a blinding host star, making the observation far easier and more detailed. The comparison with atmospheres of planets orbiting stars will provide key details about their formation and properties. Additionally, studying the presence of gas and dust around these objects, what we call ‘circumplanetary discs’, will shed more light on their formation process.”

This could be just the tip of the iceberg where rogue planets are concerned. There could potentially be billions of them in our galaxy. “Assuming the fraction of FFPs that we measured in Upper Scorpius is similar to that of other star-forming regions, there could be several billions of Jupiters roaming the Milky Way without a host star. This number would be even greater for Earth-mass planets since they are known to be more common than massive planets.”

The research is published in the journal

Nature

.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb finds that rocky planets could form in extreme radiation environment
This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming.

It takes a particular confluence of conditions for rocky planets like Earth to form, as not all stars in the universe are conducive to planet formation. Stars give off ultraviolet light, and the hotter the star burns, the more UV light it gives off. This radiation can be so significant that it prevents planets from forming from nearby dust and gas. However, the James Webb Space Telescope recently investigated a disk around a star that seems like it could be forming rocky planets, even though nearby massive stars are pumping out huge amounts of radiation.

The disk of material around the star, called a protoplanetary disk, is located in the Lobster Nebula, one of the most extreme environments in our galaxy. This region hosts massive stars that give off so much radiation that they can eat through a disk in as little as a million years, dispersing the material needed for planets to form. But the recently observed disk, named XUE 1, seems to be an exception.

Read more
Stunning James Webb image shows the beating heart of our Milky Way
The full view of the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense centre. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. A vast region of ionised hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionised hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionised region, covering about 25 light-years. A cluster of protostars – stars that are still forming and gaining mass – are producing outflows that glow like a bonfire at the base of the large infrared-dark cloud, indicating that they are emerging from the cloud’s protective cocoon and will soon join the ranks of the more mature stars around them. Smaller infrared-dark clouds dot the scene, appearing like holes in the starfield. Researchers say they have only begun to dig into the wealth of unprecedented high-resolution data that Webb has provided on this region, and many features bear detailed study. This includes the rose-coloured clouds on the right side of the image, which have never been seen in such detail.

A new image from the James Webb Space Telescope shows the heart of our galaxy, in a region close to the supermassive black hole at the center of the Milky Way, Sagittarius A*. The image shows a star-forming region where filaments of dust and gas are clumping together to give birth to new baby stars.

The image was captured using Webb's NIRCam instrument, a camera that looks in the near-infrared portion of the electromagnetic spectrum with shorter wavelengths shown in blue and cyan and longer wavelengths shown in yellow and red.

Read more
James Webb captures image of the most distant star ever discovered
A massive galaxy cluster called WHL0137-08 contains the most strongly magnified galaxy known in the universe’s first billion years: the Sunrise Arc, and within that galaxy, the most distant star ever detected, nicknamed Earendel.

The James Webb Space Telescope has captured a stunning image of the most distant star ever discovered. Discovered by Hubble in 2020, the star named Earendel is located an astonishing 28 billion light-years away. While in the previous Hubble image, the star was only visible as a small blob, these new observations from Webb are detailed enough to reveal information about the star like its type and information about the galaxy in which it resides.

The Webb image shows a galaxy cluster called WHL0137-08, which is so massive that it bends spacetime and acts like a magnifying glass for the more distant galaxies behind it. Some of these distant galaxies being magnified include one called the Sunrise Arc, which hosts Earendel. The Sunrise Arc is located near the end of one of the spikes from the bright central star, at around the five o'clock position. A zoomed-in version of the image shows the Arc and Earendel within t.

Read more