Skip to main content

Hubble captures a snake-like spiral galaxy in the constellation of Serpens

The image from the Hubble Space Telescope shared this week shows a “serpentine” galaxy with winding, snake-like spiral arms, and is appropriately enough located in the constellation of Serpens, or The Snake. Technically known as NGC 5921, the galaxy is located 80 million light-years away.

The lazily winding spiral arms of the galaxy NGC 5921 snake across this image from the NASA/ESA Hubble Space Telescope.
The lazily winding spiral arms of the galaxy NGC 5921 snake across this image from the NASA/ESA Hubble Space Telescope. This galaxy lies approximately 80 million light-years from Earth, and much like our own galaxy, the Milky Way, contains a prominent bar – a central linear band of stars. Roughly half of all spiral galaxies may contain bars. These bars affect their parent galaxies by fueling star formation and influencing the motion of stars and interstellar gas. ESA/Hubble & NASA, J. Walsh; Acknowledgment: R. Colombari

The galaxy NGC 5921 is a type called a barred spiral galaxy, like our Milky Way. The bar refers to the strip of bright light across the center of the galaxy, which is a region of dust and gas where many stars are born — hence why it glows brightly. Around half of known galaxies have bars, and researchers think that they develop as galaxies get older and dust and gas are drawn in toward their center by gravity.

The image was taken as part of a Hubble study into how the supermassive black holes at the hearts of galaxies relate to the stars within them. Hubble used its Wide Field Camera 3 instrument to take the image, which was combined with data from the ground-based Gemini Observatory.

“The two telescopes helped astronomers better understand the relationship between galaxies like NGC 5921 and the supermassive black holes they contain,” Hubble scientists write. “Hubble’s contribution determined the masses of stars in the galaxies. Hubble also took measurements that helped calibrate the observations from Gemini. Together, Hubble and Gemini provided astronomers with a census of nearby supermassive black holes in a diverse variety of galaxies.”

Hubble and Gemini have teamed up before in the past, such as when observations from both telescopes were combined with data from NASA’s Juno spacecraft to learn more about the complex atmosphere of Jupiter.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble watches an extreme exoplanet being stripped by its star
This artist's illustration shows a planet (dark silhouette) passing in front of the red dwarf star AU Microscopii.

Of the many strange exoplanets discovered to date, one of the most extreme has to be a world called AU Mic b. This Neptune-sized planet orbits close enough to its star that a year there lasts just over a week, and it is bombarded by dramatic flares from its host star which cook the planet with radiation.

Recently, Hubble observed this system to learn more about the relationship between the exoplanet and its star, technically called AU Microscopii.  The planet's hydrogen atmosphere is blown away by radiation from the star, but there were confusing findings that seemed to show that no atmosphere was being lost at some times, but significant amounts of atmosphere were lost at other times.

Read more
Hubble observes a galaxy that hosted an epic supernova explosion
The tranquil spiral galaxy UGC 12295.

This week's image from the Hubble Space Telescope shows a stunning view of a spiral galaxy called UGC 12295, located nearly 200 million light-years away. This galaxy appears face-on from Earth, meaning we can get a great view of its structure and spiral arms -- captured here using Hubble's Wide Field Camera 3 instrument.

The galaxy UGC 12295 is best known for being the location of a supernova observed in 2015. A supernova occurs when a massive star, much bigger than our sun, runs out of fuel and comes to the end of its life. As the star has less and less fuel and no longer produces as much outward pressure from the fusion occurring at its core, the gravity pushing in on the star takes over and causes the star to collapse. This collapse happens so fast that it creates a shockwave that causes the star's outer layers to explode, an event called a supernova.

Read more
Hubble image shows a lonely star glowing over an irregular background galaxy
The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.

This week's image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

Read more