Skip to main content

Hubble scientists find new way to measure the age of star clusters

This image from the NASA/ESA Hubble Space Telescope reveals an ancient, glimmering ball of stars called NGC 1466. ESA/Hubble & NASA

This Hubble image shows a scene within the bounds of our galactic neighbor, the Large Magellanic Cloud (LMC) galaxy. This particular object, called NGC 1466, is a type of star cluster called a globular cluster — a group of stars that are held together by gravity and which move together through the edges of the LMC. It is located 160,000 light-years away from Earth. Together, NGC 1466 weighs the equivalent of 140,000 of our Sun and is extremely old. Scientists calculate it is 13.1 billion years old, which is nearly as old as the universe itself.

The object provides more than just a pretty picture, however. Observations from Hubble have revealed more about how star clusters form and grow. Because star clusters are active and evolving, with structures that change over time, larger and heavier stars tend to sink towards the middle of the cluster. Over time, the core of the cluster contracts.

However, there’s something odd about the star clusters in the LMC. The younger clusters are compact, while older clusters come in both compact and diffuse forms. The new research suggests this can be understood by looking at a type of “re-invigorated star” called a blue straggler. These stars collect extra fuel as they travel and become significantly brighter. And because they have high masses, the stragglers are pulled to the center of clusters.

This means that astronomers are able to observe blue stragglers in LMC clusters and use these observations to rank the clusters in order of age. “We demonstrated that different structures of star clusters are due to different levels of dynamical aging: they are in different physical shape despite the fact that they were born at the same cosmic time,” Francesco Ferraro of the University of Bologna in Italy explained in a statement. “This is the first time that the effect of dynamical aging has been measured in the LMC clusters.”

This data could be useful for future research as well, co-author Barbara Lanzoni said in the same statement: “These findings present intriguing areas for further research, since they reveal a novel and valuable way of reading the observed patterns of LMC star clusters, providing new hints about the cluster formation history in the LMC galaxy.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
Scientists disagree on how fast the universe is expanding, and new tech is making it worse
An artist's rendition of NASA's SPHEREx space mission.

A view of thousands of galaxies in the galaxy cluster MACS0416, combining data from the James Webb Space Telescope and the Hubble Space Telescope. NASA

Something very strange is going on in the universe. The science of cosmology, which studies the universe on a grand scale, is in a state of crisis. Over the last century, scientists have found mountains of evidence that the universe is expanding over time, as they observed that the further away from Earth a galaxy is, the faster it is moving away from us.

Read more
Webb and Hubble work together to image the Christmas Tree Galaxy Cluster
This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from NASA’s James Webb Space Telescope with visible-light data from NASA’s Hubble Space Telescope. To make the image, in general the shortest wavelengths of light were color-coded blue, the longest wavelengths red, and intermediate wavelengths green. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies that could be described as one of the most colorful views of the universe ever created.

Different telescopes work at different wavelengths, meaning they can observe different objects in the sky -- and when data from various telescopes is combined, it can make for stunning views that would be impossible to get from any one instrument. That's the case with a beautiful new image of a cluster of thousands of galaxies that combines data from both the Hubble Space Telescope and the James Webb Space Telescope to create a stunning and colorful view.

This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from NASA’s James Webb Space Telescope with visible-light data from NASA’s Hubble Space Telescope. To make the image, the shortest wavelengths of light were color-coded blue, the longest wavelengths red, and intermediate wavelengths green. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies that could be described as one of the most colorful views of the universe ever created. NASA, ESA, CSA, STScI, Jose M. Diego (IFCA), Jordan C. J. D'Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri)

Read more