Skip to main content

Researchers find a way to ‘see’ dark matter

The mystery of dark matter has been a challenge for scientists, who know that the substance must exist in our universe but have been unable to find a way to identify it. As it does not give out any kind of electromagnetic radiation, dark matter can only be detected due to its gravitational effects. Now two astronomers from the University of New South Wales, Australia and the Instituto de Astrofísica de Canarias, Spain, have come up with a method to “see” dark matter by looking at the distribution of starlight in galaxy clusters.

The astronomers used data from the Hubble telescope to look at a faint source of light called intracluster light, which is caused by the interactions of galaxies. When two galaxies interact, stars can be ripped away from their home galaxy and float freely within the cluster, giving off faint light. It is known from mathematical models of clusters that the majority of the mass of the cluster is made up of dark matter, and these free-floating stars end up in the same location that the dark matter is believed to be found. “These stars have an identical distribution to the dark matter, as far as our current technology allows us to study,” one of the researchers, Dr. Mireia Montes, explains.

This means that the intracluster light given off by these isolated stars could be used as an indicator for the location of dark matter as the stars follow the gravity of the cluster. This would be a much more efficient way of tracing dark matter than other methods like gravitational lensing as it only requires the use of deep imaging like that provided by Hubble.

In addition to providing a way to track dark matter, this work could also be useful in understanding what sort of substance it is. “If dark matter is self-interacting we could detect this as tiny departures in the dark matter distribution compared to this very faint stellar glow,” another researcher, Dr. Ignacio Trujillo says. If it is the case that dark matter self-interacts, that would be a significant step forward in our understanding of what it is and how it interacts with regular matter.

The next step for the researchers is to use the Hubble data to see if their method works for other clusters as well.

The results of their studies were published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Euclid mission launches to probe the mysteries of dark matter
This artist’s concept shows the ESA (European Space Agency) Euclid mission in space.

The European Space Agency (ESA) has successfully launched its Euclid space telescope to study the mysteries of dark matter and dark energy. The spacecraft launched from Cape Canaveral in Florida using a SpaceX Falcon 9 rocket, with liftoff at 11:12 a.m. ET (8:12 a.m. PT).

This artist’s concept shows the ESA (European Space Agency) Euclid mission in space. ESA, CC BY-SA 3.0 IGO

Read more
How to watch the Euclid dark matter telescope launch this Saturday
This artist impression shows Euclid leaving Earth and on its way to Sun-Earth Lagrange point L2. This equilibrium point of the Sun-Earth system is located 1.5 million kilometres from Earth in the opposite direction of the Sun. L2 revolves around the Sun along with Earth. During Euclid’s orbit at L2, Euclid’s sunshield always blocks the light from the Sun, Earth and Moon while pointing its telescope towards deep space, ensuring a high level of stability for its instruments.

The astronomy community is about to get a new instrument to probe the mysteries of dark matter, with the launch of the European Space Agency (ESA)'s Euclid telescope this Saturday. Euclid is a highly sophisticated space-based telescope that will observe huge swaths of the sky to create a 3D model of the universe to help elucidate some of the biggest questions in cosmology.

Euclid | Journey to darkness

Read more
See and hear Stephan’s Quintet in a whole new way with NASA visualizations
A new visualization explores the galaxy group Stephan's Quintet by using observations in visible, infrared, and X-ray light. The sequence contrasts images from NASA's Hubble Space Telescope, Spitzer Space Telescope, Webb Space Telescope, and Chandra X-ray Observatory to provide insights across the electromagnetic spectrum.

One of the first targets observed by the James Webb Space Telescope when it began science operations last year was Stephan's Quintet, a group of five galaxies locked close together in a complex structure. Now, that data from Webb has been combined with data from other telescopes to give a new view of this special object -- and even to create a way to listen to it.

The project used the infrared data from Webb combined with visible light, X-ray, and other infrared observations from the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory. By combining all these different views of the same object, researchers were able to create a 3D view of the group which is visualized in a video:

Read more