Skip to main content

Researchers find a way to ‘see’ dark matter

The mystery of dark matter has been a challenge for scientists, who know that the substance must exist in our universe but have been unable to find a way to identify it. As it does not give out any kind of electromagnetic radiation, dark matter can only be detected due to its gravitational effects. Now two astronomers from the University of New South Wales, Australia and the Instituto de Astrofísica de Canarias, Spain, have come up with a method to “see” dark matter by looking at the distribution of starlight in galaxy clusters.

The astronomers used data from the Hubble telescope to look at a faint source of light called intracluster light, which is caused by the interactions of galaxies. When two galaxies interact, stars can be ripped away from their home galaxy and float freely within the cluster, giving off faint light. It is known from mathematical models of clusters that the majority of the mass of the cluster is made up of dark matter, and these free-floating stars end up in the same location that the dark matter is believed to be found. “These stars have an identical distribution to the dark matter, as far as our current technology allows us to study,” one of the researchers, Dr. Mireia Montes, explains.

Related Videos

This means that the intracluster light given off by these isolated stars could be used as an indicator for the location of dark matter as the stars follow the gravity of the cluster. This would be a much more efficient way of tracing dark matter than other methods like gravitational lensing as it only requires the use of deep imaging like that provided by Hubble.

In addition to providing a way to track dark matter, this work could also be useful in understanding what sort of substance it is. “If dark matter is self-interacting we could detect this as tiny departures in the dark matter distribution compared to this very faint stellar glow,” another researcher, Dr. Ignacio Trujillo says. If it is the case that dark matter self-interacts, that would be a significant step forward in our understanding of what it is and how it interacts with regular matter.

The next step for the researchers is to use the Hubble data to see if their method works for other clusters as well.

The results of their studies were published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

See the dark pillar of the Cone Nebula captured by the Very Large Telescope
The Cone Nebula is part of a star-forming region of space, NGC 2264, about 2500 light-years away. Its pillar-like appearance is a perfect example of the shapes that can develop in giant clouds of cold molecular gas and dust, known for creating new stars. This dramatic new view of the nebula was captured with the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) instrument on ESO’s Very Large Telescope (VLT), and released on the occasion of ESO’s 60th anniversary.

A stunning image of a distant nebula has been taken using the Very Large Telescope. The Cone Nebula, located 2,700 light-years away in the constellation of Monoceros (the Unicorn), is huge in size at 7 light-years long. The Cone Nebula is next to the beautiful Christmas Tree cluster, also known as NGC 2264.

The image was shared by the European Southern Observatory (ESO) in celebration of its formation 60 years ago. ESO operates ground-based telescopes in Chile including the Very Large Telescope, the Atacama Large Millimeter Array, and the New Technology Telescope.

Read more
Spooky cobwebbed Hubble image helps investigate dark matter
Hundreds of small galaxies appear across this view. Their colours vary. Some are shades of orange, while others are white. Most appear as fuzzy ovals, but a few have distinct spiral arms. There are also many thin, long, orange arcs that curve around the centre of the image, where there is a prominent orange glow.

With Halloween coming up tomorrow, the Hubble Space Telescope team is celebrating by releasing a new Hubble image showing the dark cobwebs of galaxy cluster Abell 611. Located an incredible 3.2 billion light-years away, this view shows hundreds of galaxies that are bound together by gravity into one enormous structure.

Taken using Hubble's Advanced Camera for Surveys and Wide Field Camera 3 instruments, the image combines both visible light and infrared observations.

Read more
Telescope team-up sees Hubble and Webb working together
hubble webb galaxy dust stsci 2022 503a f 1858x1836 1

After two images we shared last week showed how scientific knowledge can be increased by tools like the Hubble Space Telescope and the James Webb Space Telescope imaging the same target separately, this week sees a project in which data from the two telescopes has been brought together.

Both telescopes were trained on the galaxy pair VV 191 and showed how light from the elliptical galaxy on the left filters through the dusty arms of the spiral galaxy on the right. That allowed researchers to learn about the dust in the spiral galaxy. “This is a rather unique opportunity to measure how much dust has been produced in this spiral galaxy, like our own, by previous generations of stars," explained lead researcher Rogier Windhorst of Arizona State University in a statement. "Mind you that this is the kind of dust that the next generation of stars and planets, and in our case people, are also formed from."

Read more