Skip to main content

Strangely chonky exoplanet has astronomers puzzled

Astronomers recently discovered a hefty exoplanet orbiting a star similar to our sun. At just 15 million years old, this chunky planet is a baby by galactic standards, old, but it has researchers puzzled due to its tremendous density.

The planet, called HD 114082 b, is similar in size to Jupiter, but seems to have eight times its mass. It’s common for astronomers to discover gas giants similar to or larger than Jupiter, but it’s very unusual to discover a planet this dense and heavy.  “Compared to currently accepted models, HD 114082 b is about two to three times too dense for a young gas giant with only 15 million years of age,” said lead author Olga Zakhozhay in a statement.

Artist’s conception of a gas giant exoplanet orbiting around a Sun-like star. The young exoplanet HD 114082 b revolves around its Sun-like star within 110 days at a distance of 0.5 astronomical units.
Artist’s conception of a gas giant exoplanet orbiting around a sun-like star. The young exoplanet HD 114082 b revolves around its sun-like star within 110 days at a distance of 0.5 astronomical units. NASA/JPL-Caltech

If the mass measurements of this planet are correct, that would make it twice as dense as Earth — and Earth is already a dense planet, being a rocky type with a metal core. It could be that because the planet is so young, there is something about the way gas giants form that we are not yet aware of.

Recommended Videos

“We think that giant planets can form in two possible ways,” Ralf Launhardt, a co-author from the Max Planck Institute for Astronomy, says. “Both occur inside a protoplanetary disk of gas and dust distributed around a young central star.”

The first approach to how planets might form is called core accretion, in which a small core attracts other particles, which collide and stick to it until it becomes the starting point of a planet. The second theory is called disk instability, in which there is a disk of matter that cools and then splits into planet-sized chunks.

Most astronomers lean toward the core accretion theory, but this planet doesn’t fit that model. If it were formed by core accretion, you’d expect it to start off hotter than in the disk instability model, and hot gas should puff up to a larger volume. The small volume of this planet is a better fit with the less popular disk instability model.

However, there are many open questions about how planets form and how quickly they cool after formation. “It’s much too early to abandon the notion of a hot start,” said Launhardt. “All we can say is that we still don’t understand the formation of giant planets very well.”

The research will be published as a letter to the editor in the journal Astronomy & Astrophysics.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
This distant exoplanet has an atmosphere ‘like something out of science fiction’
Tylos (or WASP-121b) is a gaseous, giant exoplanet located some 900 light-years away in the constellation Puppis. Using the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), scientists have been able to prove into its atmosphere, revealing its 3D structure. This is the first time that this has been possible on a planet outside of the Solar System. The atmosphere of Tylos is divided into three layers, with iron winds at the bottom, followed by a very fast jet stream of sodium, and finally an upper layer of hydrogen winds. This kind of climate has never been seen before on any planet.

For decades, astronomers have been wondering about planets beyond our solar system -- called exoplanets -- and whether we could learn about these far-off worlds. With the introduction of tools like the James Webb Space Telescope, we're now able to not only detect exoplanets, but also to learn about them in detail. Recently, astronomers created the first 3D view of an exoplanet atmosphere, letting them peer into the climate of another world.

The researchers used a ground-based telescope, the European Southern Observatory’s Very Large Telescope (ESO’s VLT), which consists of four telescopes that work together to take detailed readings of distant objects. They found that exoplanet WASP-121b, which has surface temperatures of over 3,000 Kelvins, or 5,000 degrees Fahrenheit, is so hot that metals like iron and titanium can be whipped up into the atmosphere, carried by powerful winds.

Read more
Asteroid with a 1% chance of hitting Earth in 2032 spotted by astronomers
Artist's impression of an asteroid. This image is not intended to reflect the characteristics of any specific known asteroid.

Astronomers have made a startling discovery: a medium-sized asteroid that could potentially impact the Earth within the next 10 years. However, experts agree that the public does not have to be concerned about this just yet, as space agencies are still in the process of collecting more data to determine the exact path of the object.

Named 2024 YR4, the asteroid was discovered on December 27, 2024 by the Asteroid Terrestrial-impact Last Alert System (ATLAS) telescope in Río Hurtado, Chile, and is projected to come close to Earth in December 2032.

Read more
Wild supersonic winds whip around this extreme exoplanet
This artist’s visualisation of WASP-127b, a giant gas planet located about 520 light-years from Earth, shows its newly discovered supersonic jet winds that move around the planet’s equator. With a speed of 9 km per second (33 000 km/h), this is the fastest jetstream of its kind ever measured in the Universe.

Planets outside our solar system can be wild, weird places. Astronomers have discovered exoplanets shaped like a rugby ball, or where it rains gems, or which have one hemisphere covered in lava. And now there's a new oddity to add to the catalog: a planet with winds that are faster than the speed of sound.

WASP-127b is a huge, puffy sphere which is one of the least dense planets ever discovered. It is larger than Jupiter, but has less than a fifth of Jupiter's mass, making it unlike anything in our solar system. And its oddity has made it a favorite target for study, with astronomers observing clouds there in 2022, making it one of the few detections of clouds on a planet outside our solar system.

Read more