Skip to main content

Strangely chonky exoplanet has astronomers puzzled

Astronomers recently discovered a hefty exoplanet orbiting a star similar to our sun. At just 15 million years old, this chunky planet is a baby by galactic standards, old, but it has researchers puzzled due to its tremendous density.

The planet, called HD 114082 b, is similar in size to Jupiter, but seems to have eight times its mass. It’s common for astronomers to discover gas giants similar to or larger than Jupiter, but it’s very unusual to discover a planet this dense and heavy.  “Compared to currently accepted models, HD 114082 b is about two to three times too dense for a young gas giant with only 15 million years of age,” said lead author Olga Zakhozhay in a statement.

Artist’s conception of a gas giant exoplanet orbiting around a Sun-like star. The young exoplanet HD 114082 b revolves around its Sun-like star within 110 days at a distance of 0.5 astronomical units.
Artist’s conception of a gas giant exoplanet orbiting around a sun-like star. The young exoplanet HD 114082 b revolves around its sun-like star within 110 days at a distance of 0.5 astronomical units. NASA/JPL-Caltech

If the mass measurements of this planet are correct, that would make it twice as dense as Earth — and Earth is already a dense planet, being a rocky type with a metal core. It could be that because the planet is so young, there is something about the way gas giants form that we are not yet aware of.

“We think that giant planets can form in two possible ways,” Ralf Launhardt, a co-author from the Max Planck Institute for Astronomy, says. “Both occur inside a protoplanetary disk of gas and dust distributed around a young central star.”

The first approach to how planets might form is called core accretion, in which a small core attracts other particles, which collide and stick to it until it becomes the starting point of a planet. The second theory is called disk instability, in which there is a disk of matter that cools and then splits into planet-sized chunks.

Most astronomers lean toward the core accretion theory, but this planet doesn’t fit that model. If it were formed by core accretion, you’d expect it to start off hotter than in the disk instability model, and hot gas should puff up to a larger volume. The small volume of this planet is a better fit with the less popular disk instability model.

However, there are many open questions about how planets form and how quickly they cool after formation. “It’s much too early to abandon the notion of a hot start,” said Launhardt. “All we can say is that we still don’t understand the formation of giant planets very well.”

The research will be published as a letter to the editor in the journal Astronomy & Astrophysics.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
We now know what caused comet ‘Oumuamua’s strange orbit
An artist’s depiction of the interstellar comet ‘Oumuamua, as it warmed up in its approach to the sun and outgassed hydrogen (white mist), which slightly altered its orbit. The comet, which is most likely pancake-shaped, is the first known object other than dust grains to visit our solar system from another star.

Remember what feels like decades ago, when we were visited by a comet from another solar system in 2019? Interstellar comet ‘Oumuamua captured headlines when its cigar-shaped body was spotted following an unusual orbit through our solar system, and subsequent research suggested it might once have been part of a Pluto-like planet and was possibly pancake-shaped.

One thing particularly puzzled astronomers, though, because the comet was accelerating away from the sun in a path that seemed strange. Now, researchers say they have an explanation for its unusual pathway, and it isn't aliens -- it's a natural phenomenon called outgassing.

Read more
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more
Astronomers increasingly troubled by satellite constellations
spacex satellites light pollution trails made by starlink

Astronomers are becoming increasingly concerned about light pollution in the night sky caused by the growing number of satellites, and also space junk, in low-Earth orbit.

Sunlight reflecting off the surfaces of the satellites and junk negatively impacts the astronomers’ work as it interferes with their ability to get a clear view of the night sky. The light from the satellites can appear as streaks across images of space, or might be so bright that it prevents fainter objects from being observed.

Read more