Skip to main content

Supercomputer simulates the entire universe, from Big Bang to now

An international team of researchers has produced the most accurate simulation of the universe to date, using supercomputers to model the entire history of the universe from the Big Bang to the present day.

The project, named SIBELIUS-DARK, created a simulation that reaches out 600 million light-years from Earth, including 130 billion simulated particles. It was created using the DiRAC COSmology MAchine (COSMA) supercomputer from Durham University.

Simulation of the Milky Way galaxy and the Andromeda galaxy (known as M31).
At the very center of the simulation (and our own Universe) is the Milky Way galaxy, and our nearest massive neighbor, the Andromeda galaxy (known as M31). Dr Stuart McAlpine

The simulation can help answer questions in cosmology, as well as visualize phenomena like dark matter by seeing the way it clumps into regions called halos. “The simulations simply reveal the consequences of the laws of physics acting on the dark matter and cosmic gas throughout the 13.7 billion years that our universe has been around,” explained one of the authors, Carlos Frenk of Durham University, in a statement.

Recommended Videos

The researchers worked on the simulation by using algorithms that reproduced our local area of the universe, centered on Earth, spreading out to cover our Milky Way and also nearby galaxies like the Andromeda galaxy. This was based on a model called the Cold Dark Matter model, which is a standard model in cosmology.

“The fact that we have been able to reproduce these familiar structures provides impressive support for the standard Cold Dark Matter model and tells us that we are on the right track to understand the evolution of the entire Universe,” said Frenk. Co-author Matthieu Schaller from Leiden University concurred, adding: “This project is truly ground-breaking. These simulations demonstrate that the standard Cold Dark Matter Model can produce all the galaxies we see in our neighbourhood. This is a very important test for the model to pass.”

The researchers now want to use the model to test cosmological models further, hoping to understand more about how the universe came to be the way it is. “By simulating our Universe, as we see it, we are one step closer to understanding the nature of our cosmos,” said lead author Stuart McAlpine of the University of Helsinki. This project provides an important bridge between decades of theory and astronomical observations.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
What space agencies learned from a simulated asteroid impact
Artist's impression of ESA's Hera Mission, a small spacecraft which aims to investigate whether an asteroid headed for Earth could be deflected.

Artist's impression of ESA's Hera Mission, a small spacecraft that aims to investigate whether an asteroid headed for Earth could be deflected. ESA - ScienceOffice.org

This week, space agencies from around the world came together to figure out how to respond if a large asteroid were to strike Earth. As part of the Planetary Defense Conference, experts spent several days planning out their response to a fictional scenario in which an asteroid struck Europe and destroyed an area 60 miles wide.

Read more
New Horizons is now 50 times as far from the sun as Earth
Artist's impression of NASA's New Horizons spacecraft, en route to a January 2019 encounter with Kuiper Belt object 2014 MU69.

Artist's impression of NASA's New Horizons spacecraft, en route to a January 2019 encounter with Kuiper Belt object 2014 MU69. NASA/JHUAPL/SwRI

A NASA probe which was the first spacecraft to explore Pluto is continuing its journey out into the solar system, where it is now almost 5 billion miles from home.

Read more
Monster galaxy from the early universe lived fast and died young
monster galaxy early universe nrao19in01a 1024x576 1

Astronomers have discovered an enormous, ancient galaxy which dates back 12 billion years, to when the universe was in its earliest stages. The galaxy, XMM-2599, "lived fast and died young," according to the researchers, showing a high rate of star formation before its early demise.

"Even before the universe was 2 billion years old, XMM-2599 had already formed a mass of more than 300 billion suns, making it an ultramassive galaxy,” Benjamin Forrest, a postdoctoral researcher in the UC Riverside Department of Physics and Astronomy and lead author of the research, explained in a statement. “More remarkably, we show that XMM-2599 formed most of its stars in a huge frenzy when the universe was less than 1 billion years old, and then became inactive by the time the universe was only 1.8 billion years old.”

Read more