Skip to main content

James Webb captures an extremely distant triple-lensed supernova

Since the start of science operations of the James Webb Space Telescope in July last year, we’ve been treated to a flood of images showing space targets from nebulae to deep fields. This month, Webb researchers shared a new image captured by the telescope’s NIRCam instrument which shows a both gorgeous field of galaxies and an important astronomical phenomenon called gravitational lensing.

The image features a huge galaxy cluster called RX J2129, located 3.2 billion light-years away, which is acting as a magnifying glass and bending light coming from more distant galaxies behind it. That’s what is causing the stretched-out shape of some of the galaxies toward the top right of the image.

The massive galaxy cluster RX J2129.
This observation from the NASA/ESA/CSA James Webb Space Telescope features the massive galaxy cluster RX J2129. Gravitational lensing occurs when a massive celestial body causes a sufficient curvature of spacetime to bend the path of light traveling past or through it, almost like a vast lens. In this case, the lens is the galaxy cluster RX J2129, located around 3.2 billion light-years from Earth in the constellation Aquarius. ESA/Webb, NASA & CSA, P. Kelly

One of the galaxies being lensed is particularly notable because it contains something special. Toward the top right, the same galaxy is imaged three times, due to the lensing effect. Within this triple-lensed galaxy is an exceptionally bright event, a Type Ia supernova. These occur when a small but dense star called a white dwarf is part of a binary system with another star and pulls material away from its companion. This continues until there is too much mass in the white dwarf and it collapses, then it explodes in a hugely bright flash of light.

The light from these Type Ia supernovae is important for two reasons: firstly, it is so bright that it can be seen even from another galaxy, and secondly, it is (usually) of a consistent luminosity. That means that astronomers can look at a very distant Type Ia supernova and accurately work out how far away it is, which makes it useful for measuring cosmological distances. These objects are called “standard candles.”

This image captures an extremely distant Type Ia supernova, and that is useful to tell researchers how strong the gravitational lensing effect must be. To confirm their results, researchers also collected data using another of Webb’s instruments, its NIRSpec spectrogram, to measure the composition of the supernova.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
James Webb provides a second view of an exploded star
A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more
James Webb telescope captures a dramatic image of newborn star
The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).

A new image of a Herbig-Haro object captured by the James Webb Space Telescope shows the dramatic outflows from a young star. These luminous flares are created when stellar winds shoot off in opposite directions from newborn stars, as the jets of gas slam into nearby dust and gas at tremendous speed. These objects can be huge, up to several light-years across, and they glow brightly in the infrared wavelengths in which James Webb operates.

This image shows Herbig-Haro object HH 797, which is located close to the IC 348 star cluster, and is also nearby to another Herbig-Haro object that Webb captured recently: HH 211.

Read more