Skip to main content

An enormous galaxy cluster warps spacetime in this Hubble image

Every week, scientists using the Hubble Space Telescope share an image from this beloved piece of space technology, and this week’s image shows a vital astronomical phenomenon in action. While space telescopes can observe very far-off objects if they are bright enough, there is still a lot of the universe that is too far away to observe — which is why researchers make use of a natural occurrence called gravitational lensing.

Gravitational lensing happens when an object like a galaxy or galaxy cluster has so much mass that it noticeably warps spacetime. Everything with mass bends spacetime somewhat, but usually this effect is so small as to be effectively invisible. But when the object is something with as much mass as a large galaxy or even a collection of galaxies, then this warping can be significant enough for us to observe it.

This warping can have very useful effects, as it bends light coming from far-off objects. If a massive galaxy cluster sits between us and a faint, distant galaxy, then the gravitational lensing effect can act like a magnifying glass, making the light from the background object brighter. This allows astronomers to see some of the most distant — and therefore some of the oldest — galaxies in the universe.

A massive galaxy cluster in the constellation Cetus dominates the centre of this image from the NASA/ESA Hubble Space Telescope. This image is populated with a serene collection of elliptical and spiral galaxies, but galaxies surrounding the central cluster — which is named SPT-CL J0019-2026 — appear stretched into bright arcs, as if distorted by a gargantuan magnifying glass. This cosmic contortion is called gravitational lensing, and it occurs when a massive object like a galaxy cluster has a sufficiently powerful gravitational field to distort and magnify the light from background objects.
A massive galaxy cluster in the constellation Cetus dominates the center of this image from the NASA/European Hubble Space Telescope.  ESA/Hubble & NASA, H. Ebeling

In this Hubble image, the galaxy cluster SPT-CL J0019-2026 sits at the center. Located 4.6 billion light-years away, it is the mass of this huge cluster that creates the lensing effect, and you can see that the light from galaxies around the central cluster is stretched into elongated shapes as a result of the lensing. Without the lensing effect, these background galaxies would be too far away to see, so by taking advantage of the lensing effect, Hubble is able to see even further out into space.

This image was taken as something of a “bonus” image as part of a gap-filling project. Telescopes like Hubble receive far more applications from scientists who want to use them than can be accommodated, so time on a telescope is very precious. But there are sometimes small gaps in between different observations using the telescope, and researchers make the most out of this spare time by using it to observe interesting targets like this galaxy cluster.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble observes a galaxy that hosted an epic supernova explosion
The tranquil spiral galaxy UGC 12295.

This week's image from the Hubble Space Telescope shows a stunning view of a spiral galaxy called UGC 12295, located nearly 200 million light-years away. This galaxy appears face-on from Earth, meaning we can get a great view of its structure and spiral arms -- captured here using Hubble's Wide Field Camera 3 instrument.

The galaxy UGC 12295 is best known for being the location of a supernova observed in 2015. A supernova occurs when a massive star, much bigger than our sun, runs out of fuel and comes to the end of its life. As the star has less and less fuel and no longer produces as much outward pressure from the fusion occurring at its core, the gravity pushing in on the star takes over and causes the star to collapse. This collapse happens so fast that it creates a shockwave that causes the star's outer layers to explode, an event called a supernova.

Read more
Hubble image shows a lonely star glowing over an irregular background galaxy
The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.

This week's image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

Read more
Hubble observes a cluster of boulders around impacted asteroid Dimorphos
A NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos taken on 19 December 2022.

Last year, NASA deliberately crashed a spacecraft into an asteroid, in a first-of-its-kind test of planetary defense. At the time, telescopes around the world including the Hubble Space Telescope observed the impact between the DART spacecraft and the Dimorphos asteroid, capturing footage of the plumes of dust thrown up. Now, Hubble has observed Dimorphos once again and seen that a number of boulders have been ejected from the asteroid.

The Hubble image shown below was taken on 19 December 2022, around four months after the impact, and shows the bright streak of the asteroid across the sky, surrounded by small boulders which were knocked loose during the impact. This view was only possible after several months as the impact initially sent up large amounts of dust which made it difficult to see the asteroid in detail.

Read more