Skip to main content

Tiny, fast-spinning white dwarf is the most massive ever discovered

The white dwarf ZTF J1901+1458 is about 2,670 miles across, while the moon is 2,174 miles across. It is depicted above the Moon in this artistic representation.
The white dwarf ZTF J1901+1458 is about 2,670 miles across, while the moon is 2,174 miles across. The white dwarf is depicted above the Moon in this artistic representation; in reality, the white dwarf lies 130 light-years away in the constellation of Aquila. Giuseppe Parisi

When our sun finally runs out of fuel and nears the end of its life, it will puff up to become a red giant before it throws off its outer layers and shrinks down to become a white dwarf. This is the eventual fate of the vast majority of stars in the universe, which will come to an evolutionary end as white dwarfs.

Now, researchers from the W. M. Keck Observatory have found an unusual white dwarf which is both the smallest and the most massive ever observed. It is named J1901+1458 and is located relatively nearby, at 130 light-years from Earth.

This remarkable object is “packing a mass greater than that of our sun into a body about the size of our moon,” said lead author Ilaria Caiazzo of Caltech. “It may seem counterintuitive, but smaller white dwarfs happen to be more massive. This is due to the fact that white dwarfs lack the nuclear burning that keep up normal stars against their own self gravity, and their size is instead regulate­­­d by quantum mechanics.”

The researchers believe this particular white dwarf became so massive because it was once part of a pair of white dwarfs orbiting each other. These two stars eventually crashed together and merged into one heavier star. This process also increases the magnetic field around the star, which makes it spin faster. This white dwarf spins at a head-turning rate, completing a rotation every seven minutes.

Due to its mass, this white dwarf might evolve further into a neutron star, which is almost as dense as a black hole and usually forms from a supernova explosion.

“This is highly speculative, but it’s possible that the white dwarf is massive enough to further collapse into a neutron star,” said Caiazzo. “It is so massive and dense that, in its core, electrons are being captured by protons in nuclei to form neutrons. Because the pressure from electrons pushes against the force of gravity, keeping the star intact, the core collapses when a large enough number of electrons are removed.”

“We caught this very interesting object that wasn’t quite massive enough to explode,” said Caiazzo. “We are truly probing how massive a white dwarf can be.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Citizen scientist discovers a raft of ultracool binary stars
Illustration of an ultracool dwarf with a companion white dwarf. Ace citizen scientist Frank Kiwy used the Astro Data Lab science platform at NSF’s NOIRLab to discover 34 new ultracool dwarf binary systems in the Sun’s neighborhood, nearly doubling the number of such systems known.

It's not only professional astronomers who make amazing discoveries about space -- sometimes enthusiastic amateurs can make impressive scientific discoveries as well. Recently citizen scientist Frank Kiwy used publicly available data to discover 34 new ultracool dwarf binary systems located near our solar system.

“These discoveries were made by an amateur astronomer who conquered astronomical big data,” Aaron Meisner, an astronomer at NSF’s NOIRLab in a statement. “Modern astronomy archives contain an immense treasure trove of data and often harbor major discoveries just waiting to be noticed.”

Read more
Hubble Space Telescope finds destructive white dwarf ripping apart planetary pieces
This illustration shows a white dwarf star siphoning off debris from shattered objects in a planetary system. The Hubble Space Telescope detects the spectral signature of the vaporized debris that revealed a combination of rocky-metallic and icy material, the ingredients of planets. The findings help describe the violent nature of evolved planetary systems and the composition of its disintegrating bodies.

When stars run out of fuel and come to the end of their lives, the biggest ones explode in huge supernovas. But smaller stars go through a different change in which they throw off portions of their mass, creating a planetary nebula around them and leaving a small, dense core called a white dwarf. Like the majority of stars, our sun will eventually become a white dwarf, glowing with residual heat but no longer producing energy through fusion.

Dead Star Caught Ripping Up Planetary System

Read more
See four dwarf galaxies merging into one in this Hubble image
This newly revised NASA Hubble Space Telescope image of the Hickson Compact Group 31 (HCG 31) of galaxies highlights streams of star-formation as four dwarf galaxies interact.

An image from the Hubble Space Telescope shared this week by NASA shows an unusual interaction of four dwarf galaxies. There are two small galaxies which are so close together that they look like one object, called NGC 1741, located at the top of the image. Then there is another cigar-shaped galaxy close by to the right, and a fourth galaxy in the bottom left which is connected to the other three by a stream of young stars.

Together, the four galaxies make up a set called the Hickson Compact Group 31, or HCG 31. The group is located 166 million light-years away from Earth, which is relatively close for seeing interacting dwarf galaxies. The galaxies are currently so close together, at within 75,000 light-years of each other, that all four of them would fit within the Milky Way.

Read more