Skip to main content

They shot the world’s first black hole photo. Now they’re shooting a video

Last year, the Event Horizon Telescope (EHT) project made history by achieving something that was thought to be impossible: It captured an image of a black hole.

That was the culmination of the EHT project and also its biggest achievement to date, but it certainly wasn’t the end of the project.

In a virtual conference with reporters last week, the EHT researchers talked about what’s next for the project and how current global conditions are affecting their work.

A tale of two black holes

The project is actively examining not only M87, the famous supermassive black hole which was imaged last year, but also at Sagittarius A*, the supermassive black hole at the heart of our galaxy. The data collected over the last years is still being analyzed, with new techniques in use which could help give an even better look at the black holes’ event horizons.

First image of a black hole captured by the Event Horizon Telescope project
On April 10th 2019, the Event Horizon Telescope (EHT) Collaboration made history when it released this image of the supermassive black hole in galaxy M87. Event Horizon Telescope Collaboration

And the team is working to add more telescopes to the project, which would improve the imaging power of the array as a whole. They want to add not only ground-based telescopes but also a space-based antenna, which can detect the faint signals which would be disrupted by the Earth’s atmosphere.

As part of their efforts, the team recently discovered a new method for observing black holes which should allow them to capture these monsters in “razor-sharp” images in the future.

Collaborative science in the time of coronavirus

The scientists also shared how the global outbreak of coronavirus is affecting their research. They have had to cancel the planned observations for the project this year due to safety concerns for their team members, who would have had to visit the different observatories in the array in person, which the team described as “heartbreaking.”

The project typically takes observations once per year, so the 2020 observations have been canceled and the next set of observations will likely take place in 2021. The observations can only take place yearly due to the need for good observing weather (i.e. cloudless skies and low water levels in the atmosphere) to occur simultaneously in both the locations for the primary telescopes in the northern and southern hemispheres, which tends to happen around March and April.

This artist’s impression depicts the black hole at the heart of the enormous elliptical galaxy Messier 87 (M87). ESO/M. Kornmesser

However, other work such as the analysis of existing data has been able to go ahead. “We’re able to do a lot of the work that we’re committed to,” Sheperd Doeleman, founding director of the Event Horizon Telescope, said. “We spend a lot of our lives on Zoom anyway, because of the nature of this collaboration and its far-flung membership. In that sense, we’re able to continue a lot of the analysis we’re working on.”

Doeleman also said that the EHT project and its achievements could be a model for the kind of collaborative achievement that is possible in a connected world: “We did this only by sharing resource across borders and across fields. Especially in these troubling times, it’s an encouraging feeling to have been able to do that, to get everybody together to focus on what we thought was an impossible problem.”

How to video a black hole

The next big aim for the project is to use the expanded array to allow the scientists to capture the first movies of black holes. When it comes to viewing the way that a black hole changes over time, the enormous size of M87 gives an advantage in allowing scientists to capture it in images or video.

“For M87, which is a monster, it’s six and a half billion times the mass of our sun,” Doeleman said. “The time it takes to orbit around the black hole at the closest orbit that matter can move around is on the order of days, or more likely a month or so.

“So if you wanted to see the black hole evolve before your eyes, you would do it with time-lapse photography. You take an image one week, and then a week later, and then a week later, and if you did that over a few months, you would have a movie you could playback which would show you how the black hole is changing its shape, how the plasma around the black hole is being shocked and dragged around, how jets are being launched from the north and south pole.”

An artist’s conception of a black hole generating a jet. NASA / Dana Berry / SkyWorks Digital

When it comes to the black hole in the center of the Milky Way, however, observing it over time is much more difficult due to its comparatively small size. “Sagittarius A* is a completely different animal,” Doeleman explained. “It’s four million solar masses, so it evolves so quickly that objects orbit around it in half an hour. Trying to capture an image of that is unfortunately like opening up your lens cap and exposing your film while a runner sprints by. It’ll be very blurry.

“But if we can take snapshots, then we’ll be able to stitch those together to make a movie. And for that, we have people developing new algorithms. Instead of combining all the data from one night, they look at snapshots and then make sure they are fluid and continuous as we construct a movie.”

By using complex algorithms, the scientists are able to squeeze more useable information out of the data that they collect, leading to both more sharp and accurate images and to the possibility of new formats such as movies.

A sense of wonder about the universe

Building on the immense public interest in the black hole image generated last year, the team and the organizers, the National Science Foundation, are hopeful that further work can help bolster public support for astronomy projects.

“Scientific discovery has immense benefit for society and inspires a sense of wonder about the universe,” said Peter Kurczynski, program director at the National Science Foundation. “And few things capture the imaginations of those who are interested in the universe like black holes.”

Editors' Recommendations

This incredible image shows the magnetic field of a black hole
A view of the M87 supermassive black hole in polarised light

The Event Horizon Telescope (EHT) collaboration, which produced the first-ever image of a black hole released in 2019, has today a new view of the massive object at the center of the Messier 87 (M87) galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of a black hole.  This image shows the polarized view of the black hole in M87. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole. EHT Collaboration

The Event Horizon Telescope (EHT) project, the international collaboration which famously captured the first-ever image of a black hole, has released another new and unique image showing the same black hole's magnetic field.

Read more
How James Webb will peer through a dusty cloud to study supermassive black hole
Centaurus A sports a warped central disk of gas and dust, which is evidence of a past collision and merger with another galaxy. It also has an active galactic nucleus that periodically emits jets. It is the fifth brightest galaxy in the sky and only about 13 million light-years away from Earth, making it an ideal target to study an active galactic nucleus – a supermassive black hole emitting jets and winds – with NASA's upcoming James Webb Space Telescope.

Centaurus A sports a warped central disk of gas and dust, which is evidence of a past collision and merger with another galaxy. It also has an active galactic nucleus that periodically emits jets. It is the fifth brightest galaxy in the sky and only about 13 million light-years away from Earth, making it an ideal target to study an active galactic nucleus – a supermassive black hole emitting jets and winds – with NASA's upcoming James Webb Space Telescope. X-ray: NASA/CXC/SAO; optical: Rolf Olsen; infrared: NASA/JPL-Caltech; radio: NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle

When the James Webb Space Telescope launches later this year, it'll be the most complex space observatory in the world. Now, NASA has shared a glimpse into the kind of work that it will be able to perform in a profile of research that will be conducted on the nearby galaxy Centaurus A.

Read more
Could supermassive black holes be formed from dark matter?
Artist’s impression of a spiral galaxy embedded in a larger distribution of invisible dark matter, known as a dark matter halo (coloured in blue)

Artist’s impression of a spiral galaxy embedded in a larger distribution of invisible dark matter, known as a dark matter halo (colored in blue). Studies looking at the formation of dark matter halos have suggested that each halo could harbor a very dense nucleus of dark matter, which may potentially mimic the effects of a central black hole, or eventually collapse to form one. ESO / L. Calçada, Attribution (CC BY 4.0)

At the heart of almost every galaxy lurks a monster -- a supermassive black hole millions or even billions of times the mass of the sun. Astronomers are still trying to figure out how these enormous beasts form, and whether they are formed before or after the galaxies which surround them. Now, new research suggests that their formation could be related to another of astronomy's great mysteries: Dark matter.

Read more