Skip to main content

Small, sneaky black hole discovered outside our galaxy using new method

A new detection method has been used to discover a small black hole outside the Milky Way, which could pave the way for the discovery of more hidden small black holes within our galaxy as well.

Very large black holes are relatively easy to detect because they give off X-rays as the matter is heated to glowing hot as it is pulled toward the black hole’s event horizon. By looking for these X-rays, or for the gravitational waves given off by black hole collisions, astronomers can spot big black holes. But it’s more difficult to spot smaller black holes which are comparable in mass to our sun because most of them don’t give off either X-rays or gravitational waves.

Artist’s impression showing a compact black hole 11 times as massive as the Sun and the five-solar-mass star orbiting it.
This artist’s impression shows a compact black hole 11 times as massive as the Sun and the five-solar-mass star orbiting it. The two objects are located in NGC 1850, a cluster of thousands of stars roughly 160 000 light-years away in the Large Magellanic Cloud, a Milky Way neighbor. The distortion of the star’s shape is due to the strong gravitational force exerted by the black hole. ESO/M. Kornmesser

But recently, a team using the European Southern Observatory’s Very Large Telescope (ESO’s VLT) was able to spot a black hole that is 11 times the mass of our sun and is located 160,000 light-years away by looking at its gravitational influence on the motion of a nearby star.

“Similar to Sherlock Holmes tracking down a criminal gang from their missteps, we are looking at every single star in this cluster with a magnifying glass in one hand trying to find some evidence for the presence of black holes but without seeing them directly,” explained lead researcher Sara Saracino from the Astrophysics Research Institute of Liverpool John Moores University in a statement. “The result shown here represents just one of the wanted criminals, but when you have found one, you are well on your way to discovering many others, in different clusters.”

The small black hole is located in a cluster of stars called NGC 1850, which is located in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This cluster of stars is very young by astronomical standards, at just 100 million years old, and this is the first time a black hole has been observed in such a young cluster. By comparing this small, baby black hole with its older, bigger brethren, astronomers can learn more about how black holes grow and evolve.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Something strange is up with this black hole
Artist’s illustration of tidal disruption event AT2019dsg where a supermassive black hole spaghettifies and gobbles down a star. Some of the material is not consumed by the black hole and is flung back out into space.

One of the first things that people learn about black holes is that they absorb everything which comes close to them, but this isn't exactly accurate. It is true that once anything passes the event horizon of a black hole it can never escape, but there is a significant area around the black hole where its gravitational effects are still extremely strong but things can still escape. In fact, black holes regularly give off dramatic jets of matter, which are typically thrown out when material falls into the black hole and a small amount is ejected outward at great speeds.

But astronomers recently discovered a totally mysterious phenomenon, where a black hole is ejecting material years after it ripped apart a star. The black hole AT2019dsg is located 665 million light-years away and was observed tearing apart the star in 2018, then for unknown reasons, it became extremely active again in 2021. “This caught us completely by surprise — no one has ever seen anything like this before,” said lead author Yvette Cendes, a research associate at the Center for Astrophysics | Harvard & Smithsonian (CfA).

Read more
There’s a bubble of hot gas zipping around our galaxy’s supermassive black hole
This is the first image of Sagittarius A* (or Sgr A* for short), the supermassive black hole at the centre of our galaxy. It’s the first direct visual evidence of the presence of this black hole. It was captured by the Event Horizon Telescope (EHT), an array which linked together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The telescope is named after the “event horizon”, the boundary of the black hole beyond which no light can escape.

At the center of our galaxy is an enormous black hole, surrounded by a swirl of glowing hot gas which forms a ring structure around the black hole itself. This structure was famously captured in the first-ever image of the supermassive black hole, named Sagittarius A*, which was released earlier this year. Now, scientists have discovered an oddity in this dramatic environment, detecting a bubble of hot gas which is orbiting around the black hole and its ring structure.

Sagittarius A* and animation of the hot spot around it

Read more
Merged galaxy gives a glimpse at the future of the Milky Way
The galaxy NGC 7727 was born from the merger of two galaxies that started around a billion years ago. The cosmic dance of the two galaxies has resulted in the spectacular wispy shape of NGC 7727. At the heart of the galaxy, two supermassive black holes are spiralling closer to each other, expected to merge within 250 million years, the blink of an eye in astronomical time. This image of NGC 7727 was captured by the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) instrument at ESO’s Very Large Telescope (VLT).

At the heart of almost every galaxy lies an enormous black hole. These monsters are so massive that they get a classification of their own: supermassive black holes, with masses millions or even billions of times the mass of our sun. And when two galaxies collide, their supermassive black holes get closer and closer until these beasts eventually merge as well.

This almost incomprehensible process is on display in an image recently shared by the European Southern Observatory (ESO), showing an almost-merged galaxy that contains the closest pair of supermassive black holes ever discovered at just 1,600 light years apart. Galaxy NGC 7727 started off as two galaxies, which began merging around a billion years ago, and within the next few hundred million years, the two supermassive black holes are set to collide, creating an even bigger black hole in the process.

Read more