Skip to main content

Astronomers observe largest-ever merger between ‘impossible’ black holes

Researchers have observed the most massive black hole collision ever detected, using the gravitational wave observatories LIGO and VIRGO. The two monstrous black holes crashing into each other are the 88 times the mass of the sun and 66 times the mass of the sun respectively, and their collision gave off such tremendous energy that it was detectable through ripples in space-time called gravitational waves.

The finding is surprising not only because of its epic scale — there’s also a strange mystery surrounding the larger of the black holes. Astronomers often find black holes that are relatively small at less than 100 times the mass of the sun, called stellar black holes, and or those which are very large at millions or billions of times the mass of the sun, called supermassive black holes. But those in between these two sizes, called intermediate-mass black holes, are rare.

Artist’s impression of binary black holes about to collide
Artist’s impression of binary black holes about to collide Mark Myers, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

At 85 times the mass of the sun, the larger black hole seems to be impossible because when a star of that size collapses, it typically reaches a stage called pair instability supernova in which it blows apart in an enormous explosion, leaving nothing behind. So this black hole can’t have been created by the collapse of a star and must have been formed in some other way.

Astronomers therefore think that the larger black hole must have been formed by a previous merger of two smaller black holes.

“We think of black holes as the vacuum cleaners of the universe,” co-author Susan Scott from the Australian National University explained in a statement. “They suck in everything in their paths, including gas clouds and stars. They also suck in other black holes and it is possible to produce bigger and bigger black holes by the ongoing collisions of earlier generations of black holes. The heavier ‘impossible’ black hole in our detected collision may have been produced in this way.”

This also means the final black hole created by the collision has a mass of around 142 times the mass of the sun, which puts it in the rare intermediate black hole (IMBH) zone. This is the first time that a black hole of this size has been observed forming through a merger.

“Every observation we make of two black holes colliding gives us new and surprising information about the lives of black holes throughout the universe,” postdoctoral researcher Vaishali Adya said in the statement. “We are beginning to populate the black hole mass gaps previously thought to exist, with `impossible’ black holes that have been revealed through our detections.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
Astronomers just spotted the largest cosmic explosion ever seen
Artist’s impression of a black hole accretion.

Astronomers recently observed the largest cosmic explosion ever seen, far brighter than a supernova and lasting for much longer too. They believe that the outpouring of light is due to a supermassive black hole devouring a large cloud of gas.

Some of the brightest events seen in the sky are supernovae, which are huge explosions that occur when a massive star comes to the end of its life. But the recently observed event, called AT2021lwx, was 10 times brighter than any known supernova. Supernovae also typically last for a few months, but this event has been shining out for several years.

Read more
See the terrifying scale of a supermassive black hole in NASA visualization
Illustration of the black hole Sagittarius A* at the center of the Milky Way.

This week is black hole week, and NASA is celebrating by sharing some stunning visualizations of black holes, including a frankly disturbing visualization to help you picture just how large a supermassive black hole is. Supermassive black holes are found at the center of galaxies (including our own) and generally speaking, the bigger the galaxy, the bigger the black hole.

Illustration of the black hole Sagittarius A* at the center of the Milky Way. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

Read more