Skip to main content

‘Closest black hole’ isn’t actually a black hole, but a stellar vampire

In 2020, astronomers announced they had found the closest black hole ever, located just 1,000 light-years away. However, recent research suggests that the object in question is not actually a black hole, but is rather a rare form of two-star “vampire” system.

The system, called HR 6819, was originally thought to be a three system, with two stars orbiting a black hole — one star near to the black hole and the other much further away. But other researchers suggested a different interpretation of the data, with two stars orbiting each other and no black hole, where one of the stars was “stripped” down to a much lower mass.

This artist’s of an oblate star with a disc around it and B-type star that has been stripped of its atmosphere (background).
New research using data from ESO’s Very Large Telescope and Very Large Telescope Interferometer has revealed that HR 6819, previously believed to be a triple system with a black hole, is in fact a system of two stars with no black hole. This artist’s impression shows what the system might look like; it’s composed of an oblate star with a disc around it (a “vampire” star; foreground) and a B-type star that has been stripped of its atmosphere (background). ESO/L. Calçada

The two teams of researchers, both those who made the original finding and those who proposed the alternative theory, joined forces to research the possibilities. New data gathered using the European Southern Observatory (ESO)’s Very Large Telescope shows that there are two stars orbiting each other closely, supporting the idea of a stripped star. “These data proved to be the final piece of the puzzle, and allowed us to conclude that HR 6819 is a binary system with no black hole,” said lead researcher Abigail Frost in a statement.

“Our best interpretation so far is that we caught this binary system in a moment shortly after one of the stars had sucked the atmosphere off its companion star. This is a common phenomenon in close binary systems, sometimes referred to as ‘stellar vampirism’ in the press,” explained Julia Bodensteiner, co-author of the new study. “While the donor star was stripped of some of its material, the recipient star began to spin more rapidly.”

Even though the system turns out not to host a black hole, it is an exciting finding all the same as it gives researchers a chance to study this stellar vampirism at a crucial time. “Catching such a post-interaction phase is extremely difficult as it is so short,” said Frost. “This makes our findings for HR 6819 very exciting, as it presents a perfect candidate to study how this vampirism affects the evolution of massive stars, and in turn the formation of their associated phenomena including gravitational waves and violent supernova explosions.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
These supermassive black holes are cozying up close together
Scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) to look deep into the heart of the pair of merging galaxies known as UGC 4211 discovered two black holes growing side by side, just 750 light-years apart. This artist’s conception shows the late-stage galaxy merger and its two central black holes. The binary black holes are the closest together ever observed in multiple wavelengths.

At the center of most galaxies lies a single monster: a supermassive black hole, with a mass millions or even billions of times that of the sun. These lonely beasts typically sit alone in the heart of galaxies, but recent research found two of these monsters nestled close together in the galaxy UGC4211.

The two supermassive black holes originated in two different galaxies which are now merging into one, located relatively close by at a distance of 500 million light-years from Earth. The pair is among the closest black hole binaries ever observed, sitting just 750 light-years apart, and was observed using the Atacama Large Millimeter/submillimeter Array (ALMA).

Read more
Listen to the spooky echoes of a black hole
The black hole in V404 Cygni is actively pulling material away from a companion star — with about half the mass of the Sun — into a disk around the invisible object. A burst of X-rays from the black hole detected in 2015 created the high-energy rings from a phenomenon known as light echoes, where light bounces off of dust clouds in between the system and Earth. In these images, X-rays from Chandra are shown, along with optical data from the Pan-STARRS telescope that depict the stars in the field of view.

As well as admiring beautiful pictures of space, you can also listen to those pictures via sonifications. These take images and translate them into eerie sounds to illustrate the wonderful and strange phenomena of our universe. NASA's latest sonification illustrates the rings of X-rays that have been observed echoing around a black hole in the V404 Cygni system.

Quick Look: 'Listen' to the Light Echoes From a Black Hole

Read more
The ghostly remnants of a dead star captured in stunning image
This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. This detailed image consists of 554 million pixels, and is a combined mosaic image of observations taken with the 268-million-pixel OmegaCAM camera at the VLT Survey Telescope, hosted at ESO’s Paranal Observatory. OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct colour. To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.

When a massive star runs out of fuel and comes to the end of its life, it can explode in an enormous and epic event called a supernova, which can be as bright as an entire galaxy. These explosions can obliterate anything around them, but they aren't simply destructive -- they can also create stunning structures called supernova remnants. These remnants are formed as shock waves from the explosion travel through nearby clouds of gas, sculpting them into beautiful shapes.

One such ghostly remnant has been captured by a ground-based instrument called OmegaCAM on the European Southern Observatory's VLT Survey Telescope.  The Vela supernova remnant is located 800 light-years away and was created by the death of a star around 11,000 years ago.

Read more