Skip to main content

James Webb Telescope eyes exoplanet with oceans of lava

The James Webb Space Telescope is about to start peering into deep space in one of the most highly anticipated missions of recent years.

Five months after launch, and following a million-mile voyage to a spot that put it in orbit around our sun, the most powerful space telescope ever built is currently performing final calibrations of its onboard scientific instruments. Then, in just a few weeks’ time, it will begin the exciting work of trying to unlock the mysteries of our universe.

This week, NASA disclosed that the James Webb Space Telescope team has already identified two celestial bodies that it wants to explore with the space-based observatory: The lava-covered 55 Cancri e and the airless LHS 3844 b.

Both of these exoplanets (a planet outside our solar system) are classified as “super-Earths” for their size and rocky composition. The Webb team will train the telescope’s high-precision spectrographs on both in the hope of finding out more about the “geologic diversity of planets across the galaxy, and the evolution of rocky planets like Earth,” NASA said.

55 Cancri e

55 Cancri e is a mere 1.5 million miles from its sun (we’re 93 million miles from ours) and therefore features surface temperatures far above the melting point of typical rock-forming minerals. It means that parts of its surface are likely to be covered in oceans of lava.

The Webb team is keen to find out if 55 Cancri e is tidally locked, resulting in one side always facing its star. Such a state would be usual for planets that orbit this close to a star, but earlier observations carried out by NASA’s Spitzer Space Telescope suggest the hottest part of the planet is away from the area that directly faces the star and that the heat on the day side varies.

This has left scientists wondering if 55 Cancri e has a dynamic atmosphere that shifts heat around. It’s a question that Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI) should be able to answer by capturing the thermal emission spectrum of the day side of the planet.

Alternatively, it’s also possible that the planet is not tidally locked and is actually rotating. In this case, the surface would “heat up, melt, and even vaporize during the day, forming a very thin atmosphere that Webb could detect,” NASA said, adding that, in the evening, the vapor would then cool and condense to form “droplets of lava that would rain back to the surface, turning solid again as night falls.” Again, the team plans to use Webb’s NIRCam to determine if this is the case.

LHS 3844 b

The much smaller and cooler LHS 3844 b offers Webb scientists a chance to closely analyze the solid rock on an exoplanet’s surface. Different types of rock have different spectra, so the Webb team plans to use MIRI to learn more about the planet’s composition.

MIRI will capture the thermal emission spectrum of the day side of LHS 3844 b and compare it to spectra of known rocks, like basalt and granite, to determine its composition, NASA said.

Webb’s observations of the two exoplanets are expected to help scientists in much broader ways. “They will give us fantastic new perspectives on Earth-like planets in general, helping us learn what the early Earth might have been like when it was hot like these planets are today,” said Laura Kreidberg of the Max Planck Institute for Astronomy.

The James Webb Space Telescope mission is also aiming to track down the first galaxies formed after the Big Bang, find out how galaxies evolved from formation to now, and measure the physical and chemical properties of planetary systems — among other goals.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more