Skip to main content

James Webb begins aligning 3 of its instruments

The James Webb Space Telescope recently hit a big milestone when engineers completed the alignment of its mirrors. But there is still a lot to do before the telescope is ready to begin science operations this summer. With the mirrors aligned with Webb’s instruments, NIRCam, now the team needs to work on aligning the other three instruments, and it recently began to do that with a process called multi-instrument multi-field (MIMF) alignment.

The six-week MIMF alignment process will align the three instruments plus Webb’s guidance system, called the Fine Guidance Sensor (FGS). This process is necessary to allow Webb to switch seamlessly between its different instruments. All the cameras observe at the same time, so if researchers want to look at a particular target like a star using different instruments, the telescope needs to be repointed to move the target into the field of view of the new instrument.

NASA scientists have shared more about how the MIMF alignment works in a blog post. “After MIMF, Webb’s telescope will provide a good focus and sharp images in all the instruments. In addition, we need to precisely know the relative positions of all the fields of view,” wrote Jonathan Gardner, Webb deputy senior project scientist, and Stefanie Milam, Webb deputy project scientist for planetary science, at NASA’s Goddard Space Flight Center.

“Over last weekend, we mapped the positions of the three near-infrared instruments relative to the guider and updated their positions in the software that we use to point the telescope. In another instrument milestone, FGS recently achieved ‘fine guide’ mode for the first time, locking onto a guide star using its highest precision level. We have also been taking ‘dark’ images, to measure the baseline detector response when no light reaches them – an important part of the instrument calibration.”

The next instruments to be aligned will be the Near-Infrared Spectrograph and the Near InfraRed Imager and Slitless Spectrograph, which along with NIRCam are the three near-infrared instruments. The final instrument, the Mid-Infrared Instrument or MIRI, will be the last to be aligned as it still needs to be cooled down to its operating temperature, which is an almost unfathomably chilly seven degrees above absolute zero.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy
This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more
James Webb Space Telescope celebrated on new stamps
Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024.

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024. USPS

Beautiful images captured by the James Webb Space Telescope have landed on a new set of stamps issued this week by the U.S. Postal Service (USPS).

Read more