Skip to main content

Astronomers spot a monster black hole ‘practically in our backyard’

Black holes come in a variety of sizes, from stellar black holes a few times the mass of the sun all the way up to supermassive black holes, which are millions of times the mass of the sun and lurk at the heart of galaxies. Recently, astronomers discovered a massive black hole just 1,550 light-years away, which is right in our neighborhood, astronomically speaking. It is one of the closest black holes ever discovered, with a mass 12 times that of the sun. Being so close to us, it’s an exciting target for future research.

The cross-hairs mark the location of the newly discovered monster black hole.
The cross-hairs mark the location of the newly discovered monster black hole. Sloan Digital Sky Survey / S. Chakrabart et al.

“It is closer to the sun than any other known black hole, at a distance of 1,550 light years,” said Sukanya Chakrabarti, lead author of the study from the University of Alabama in Huntsville, in a statement. “So, it’s practically in our backyard.”

Recommended Videos

The black hole was discovered using data from the European Space Agency’s Gaia mission, which is building a 3D map of the entire galaxy. The researchers looked at nearly 200,000 binary stars, in which a star orbits a companion, to search for cases where the brightness of one star was sufficient to explain the brightness of the binary. That implies that the companion in these binaries must be dark, which suggests the companion could be a black hole.

Then, the researchers took these selected binaries and studied the Doppler shift of their light, which shows how massive the companion must be and gives information about the pair’s orbit and rotation. This is how they identified and learned about the nearby black hole.

“In this case we’re looking at a monster black hole but it’s on a long-period orbit of 185 days, or about half a year,” Chakrabarti said. “It’s pretty far from the visible star and not making any advances toward it.”

As well as finding a useful target for research because of its location, the study also demonstrates how more black holes can be identified in the future.

“Simple estimates suggest that there are about a million visible stars that have massive black hole companions in our galaxy,” Chakrabarti said. “But there are a hundred billion stars in our galaxy, so it is like looking for a needle in a haystack. The Gaia mission, with its incredibly precise measurements, made it easier by narrowing down our search.”

The research has not yet been peer reviewed but has been submitted to The Astrophysical Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA 360-degree video shows what it’s like to plunge into a black hole
A black hole according to NASA's 360-degree video.

360 Video: NASA Simulation Shows a Flight Around a Black Hole

If you were having a bad day, plunging into a black hole would be enough to really top it off. Apparently, you’d experience a process known as “spaghettification” in which the black hole’s enormous gravitational force would compress your entire body while stretching it out at the same time, leaving you a bit noodle-like. Falling into a supermassive black hole would be a slightly less horrendous experience, apparently.

Read more
Biggest stellar black hole to date discovered in our galaxy
Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the orbits of both the star and the black hole, dubbed Gaia BH3, around their common centre of mass. This wobbling was measured over several years with the European Space Agency’s Gaia mission. Additional data from other telescopes, including ESO’s Very Large Telescope in Chile, confirmed that the mass of this black hole is 33 times that of our Sun. The chemical composition of the companion star suggests that the black hole was formed after the collapse of a massive star with very few heavy elements, or metals, as predicted by theory.

Black holes generally come in two sizes: big and really big. As they are so dense, they are measured in terms of mass rather than size, and astronomers call these two groups of stellar mass black holes (as in, equivalent to the mass of the sun) and supermassive black holes. Why there are hardly any intermediate-mass black holes is an ongoing question in astronomy research, and the most massive stellar mass black holes known in our galaxy tend to be up to 20 times the mass of the sun. Recently, though, astronomers have discovered a much larger stellar mass black hole that weighs 33 times the mass of the sun.

Not only is this new discovery the most massive stellar black hole discovered in our galaxy to date but it is also surprisingly close to us. Located just 2,000 light-years away, it is one of the closest known black holes to Earth.

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more