Skip to main content

Machine learning algorithms surpass doctors at predicting heart attacks

ai algorithm heart attack 13876589  young adult man suffering from severe chest pain
Doctors are not clairvoyant, but it looks like technology is getting awfully close. Thanks to a team of researchers at the University of Nottingham in the United Kingdom, we could be closer than ever before to predicting the future when it comes to patients’ health risks. The scientists have managed to develop an algorithm that outperforms medical doctors when it comes to predicting heart attacks. And this, experts say, could save thousands or even millions of lives every year.

As it stands, around 20 million people fall victim to cardiovascular disease, which includes heart attacks, strokes, and blocked arteries. Today, doctors depend on guidelines similar to those of the American College of Cardiology/American Heart Association (ACC/AHA) in order to predict individuals’ risks. These guidelines include factors like age, cholesterol level, and blood pressure.

Unfortunately, that’s often insufficient. “There’s a lot of interaction in biological systems,” Stephen Weng, an epidemiologist at the University of Nottingham, told Science Magazine. And some of them make less sense than others. “That’s the reality of the human body,” Weng continued. “What computer science allows us to do is to explore those associations.”

In employing computer science, Weng took the ACC/AHA guidelines and compared them to four machine-learning algorithms: random forest, logistic regression, gradient boosting, and neural networks. The artificially intelligent algorithms began to train themselves using existing data to look for patterns and create their own “rules.” Then, they began testing these guidelines against other records. And as it turns out, all four of these methods “performed significantly better than the ACC/AHA guidelines,” Science reports.

The most successful algorithm, the neural network, actually was correct 7.6 percent more often than the ACC/AHA method, and resulted in 1.6 percent fewer false positives. That means that in a sample size of around 83,000 patient records, 355 additional lives could have been saved.

“I can’t stress enough how important it is,” Elsie Ross, a vascular surgeon at Stanford University in Palo Alto, California, who was not involved with the work, told Science, “and how much I really hope that doctors start to embrace the use of artificial intelligence to assist us in care of patients.”

Editors' Recommendations

Lulu Chang
Former Digital Trends Contributor
Fascinated by the effects of technology on human interaction, Lulu believes that if her parents can use your new app…
DeepSqueak is a machine learning A.I. that reveals what rats are chatting about
researchers create quad core computer from four rat brains lab

DeepSqueak helps researchers decode rodent chatter

Just as Aquaman can talk to fish, so too can researchers at the University of Washington chat with rats. Or, at least, they can better understand what rats are squeaking about thanks to a deep learning artificial intelligence (A.I.) system with the ingenious name "DeepSqueak."

Read more
Statistician raises red flag about reliability of machine learning techniques
artificial virus kills cancer cells cell

Machine learning is everywhere in science and technology: powering facial recognition, picking your recommendations on Netflix, and controlling self-driving cars. But how reliable are machine learning techniques really? A statistician says that the answer is "not very," arguing that questions of accuracy and reproducability of machine learning have not been fully addressed.

Dr Genevera Allen, associate professor of statistics, computer science, and electrical and computer engineering Rice University in Houston, Texas has discussed this topic at a press briefing and at a scientific conference, the 2019 Annual Meeting of the American Association for the Advancement of Science (AAAS). She warned that researchers in the field of machine learning have spent so much time developing predictive models that they have not devoted enough attention to checking the accuracy of their models, and that the field must develop systems which can assess the accuracy of their own findings.

Read more
Machine learning? Neural networks? Here’s your guide to the many flavors of A.I.
Neural networks? Machine learning? Here's your secret decoder for A.I. buzzwords
machine learning

A.I. is everywhere at the moment, and it’s responsible for everything from the virtual assistants on our smartphones to the self-driving cars soon to be filling our roads to the cutting-edge image recognition systems reported on by yours truly.

Unless you've been living under a rock for the past decade, there's good a chance you've heard of it before -- and probably even used it. Right now, artificial intelligence is to Silicon Valley what One Direction is to 13-year-old girls: an omnipresent source of obsession to throw all your cash at, while daydreaming about getting married whenever Harry Styles is finally ready to settle down. (Okay, so we’re still working on the analogy!)

Read more