Massive telescope will let us gaze deeper into the galaxy than ever before

ESOcast 109 Light: Full steam ahead with ELT primary mirror (4K UHD)
The first stone for the Extremely Large Telescope (ELT) was laid during an opening ceremony last week in Chile. Its name isn’t pure hyperbole — the ELT will boast a main mirror measuring 128 feet in diameter, which will make it the largest telescope on Earth once complete.
Recommended Videos

But size alone won’t make the ELT unique. The telescope will be unparalleled in clarity as well.

“It is an adaptive telescope,” Niranjan Thatte, an Oxford astrophysicist who will work with the telescope, told Digital Trends. “[This] means that it has built into it a mechanism … for compensating the effects of atmospheric turbulence, allowing the telescope to deliver much sharper images than typical ground-based telescopes.”


Thatte serves as principal investigator of HAROMNI, a visible and near-infrared instrument that will be designed to snap thousands of images at once, each in a different color.

“It is a workhorse instrument, designed to carry out a large variety of science observations, from observations of planets around nearby stars, and in our own solar system, to the most distant galaxies,” Thatte said. “It will improve our understanding of how galaxies formed and evolved.”

As an integral field spectrograph, HARMONI will be capable of capturing 4,000 images simultaneously. Thatte’s research team will use these images to study distant celestial structures, like galaxies and solar systems, to determine their mass, age, and chemical makeup.

ELT is scheduled for completion in 2024. Although Thatte expects to conduct great science once it’s launched, he acknowledges that many of our most pressing questions may change in the next seven years.

“Personally, I feel that the real groundbreaking discoveries from ELT will be those that we cannot plan today – the telescope and its instruments will allow new ‘parameter space’ to be explored – observations markedly different from any that we imagine today,” he said. “It will be these unforeseen uses that will likely yield truly remarkable physical insights into the way the universe works.”

Editors' Recommendations

Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
James Webb spots ‘universe-breaking’ massive early galaxies

The James Webb Space Telescope continues to throw up surprises, and recently it has been used to spot some very old galaxies which have astonished astronomers. The galaxy candidates are far more massive than anyone expected would be possible, challenging assumptions about the early universe.

An international team of astronomers spotted six potential galaxies in a region of space close to the Big Dipper constellation from just 500 to 700 million years after the Big Bang, when the universe was still in its infancy. “These objects are way more massive​ than anyone expected,” said one of the researchers, Joel Leja of Penn State. “We expected only to find tiny, young, baby galaxies at this point in time, but we’ve discovered galaxies as mature as our own in what was previously understood to be the dawn of the universe.”

Read more
See a stunning field of galaxies captured by James Webb Space Telescope

Stunning images from the James Webb Space Telescope continue to entrance, and recently the researchers using the telescope have shared a gorgeous image of a field of galaxies as part of the Webb Picture of the Month collection.

The image shows a spattering of different background galaxies, while the foreground shows bright individual stars and a bright spiral galaxy at the bottom called LEDA 2046648. Located around a billion light-years from Earth, this galaxy is relatively much closer to us than the far-off background galaxies which is why it is so prominent in the image.

Read more
James Webb spots two of the earliest galaxies ever seen

The James Webb Space Telescope has discovered two of the earliest galaxies ever seen in the universe, and they are much brighter than expected, meaning astronomers are rethinking their beliefs about how the earliest stars formed.

"These observations just make your head explode," said Paola Santini, one of the researchers, in a statement. "This is a whole new chapter in astronomy. It’s like an archaeological dig, when suddenly you find a lost city or something you didn’t know about. It’s just staggering."

Read more