Skip to main content

Astronomers finally confirm general relativity around a supermassive black hole

For the first time, astronomers have confirmed Einstein’s century-old theory of general relativity by observing action near a black hole. Using the European Southern Observatory’s Very Large Telescope (VLT) in Chile, an international team of professional sky-gazers watched as a star swung by the supermassive black hole at the center of the Milky Way Galaxy, and observed the effect the black hole’s extreme gravitational field had on the star’s motion.

The observation was the culmination of a 26-year-long project that saw some of Earth’s most powerful astronomical tools pointed in just the right place at just the right time.

“Since this was the first time such a close passage could be observed with very high precision, and since such an event occurs only every 16 years, you can imagine that we were very excited to see this unfold in front of our eyes,” Stefan Gillessen, a staff scientist at the Max Planck Institute for Extraterrestrial Physics, who worked on the study, told Digital Trends.

A supermassive black hole sits at the center of the galaxy, some 26,000 light years away from Earth. It’s a relatively close neighbor, millions of light years closer than other black holes of similar size. By pointing the highly sensitive instruments of the VLT towards the galactic center, astronomers were able to “see individual stars dance around the black hole,” Gillessen said. “It is a wonderful system, offering detailed views of the motions of stars under the influence of such a gravity monster.”

Using these instruments, the astronomers observed a star called S2 undergo an effect known as gravitational redshift, which signifies that the star’s light is being stretched to longer wavelengths.

“Light feels a gravitational field, very much like a stone does,” Gillessen said. “When you throw it up, it will lose energy, slow down and eventually fall back to Earth. Light traveling outward against gravity also loses energy, however it cannot slow down — it always moves at the speed of light — but it can change its wavelength, its color. Light gets redder when it moves out.

“The effect is significant to observe, since it occurs as a consequence of general relativity,” he added. “Newton would not have predicted that this occurs.”

This study represents the first time astronomers have confirmed this gravitational redshift through the observation of a black hole. Though similar observations have been made in the past, prior studies lacked the precision instruments of today’s VLT. Gillessen said they will continue continue to observe this S2 with the hopes of detecting other relativistic effects.

A paper detailing the research was published last month in the journal Astronomy and Astrophysics.

Editors' Recommendations

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
See the terrifying scale of a supermassive black hole in NASA visualization
Illustration of the black hole Sagittarius A* at the center of the Milky Way.

This week is black hole week, and NASA is celebrating by sharing some stunning visualizations of black holes, including a frankly disturbing visualization to help you picture just how large a supermassive black hole is. Supermassive black holes are found at the center of galaxies (including our own) and generally speaking, the bigger the galaxy, the bigger the black hole.

Illustration of the black hole Sagittarius A* at the center of the Milky Way. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

Read more
Supermassive black hole spews out jet of matter in first-of-its-kind image
Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet is seen rising up from the centre of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.

As well as pulling in anything which comes to close to them, black holes can occasionally expel matter at very high speeds. When clouds of dust and gas approach the event horizon of a black hole, some of it will fall inward, but some can be redirected outward in highly energetic bursts, resulting in dramatic jets of matter that shoot out at speeds approaching the speed of light. The jets can spread for thousands of light-years, with one jet emerging from each of the black hole's poles in a phenomenon thought to be related to the black hole's spin.

Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet of matter is seen rising up from the center of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets. S. Dagnello (NRAO/AUI/NSF)

Read more
Machine learning used to sharpen the first image of a black hole
A team of researchers, including an astronomer with NSF’s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The image of the M87 supermassive black hole originally published by the EHT collaboration in 2019 (left); and a new image generated by the PRIMO algorithm using the same data set (right).

The world watched in delight when scientists revealed the first-ever image of a black hole in 2019, showing the huge black hole at the center of galaxy Messier 87. Now, that image has been refined and sharpened using machine learning techniques. The approach, called PRIMO or principal-component interferometric modeling, was developed by some of the same researchers that worked on the original Event Horizon Telescope project that took the photo of the black hole.

That image combined data from seven radio telescopes around the globe which worked together to form a virtual Earth-sized array. While that approach was amazingly effective at seeing such a distant object located 55 million light-years away, it did mean that there were some gaps in the original data. The new machine learning approach has been used to fill in those gaps, which allows for a more sharp and more precise final image.

Read more