Skip to main content

2020 Nobel Prize for physics goes to pioneering black hole scientists

 

There’s a black hole at the center of this year’s Nobel Prize for physics. Announced Tuesday, Oxford University mathematician Roger Penrose, Max Planck Institute for Extraterrestrial Physics astronomer Reinhard Genzel, and University of California, Los Angeles astronomer Andrea Ghez will share the 114th Nobel Prize for their pioneering work on the formation of black holes, and the discovery of a giant one at the heart of the Milky Way.

Recommended Videos

Black holes are regions of spacetime in which the gravity is so strong that not even light can escape from it. The boundary from which no escape is possible from a black hole is called an event horizon. The concept of objects with such significant gravitational fields was suggested as far back as the 18th century, although it took until the 20th century until the idea was considered in more detail. Albert Einstein’s theory of general relativity, for instance, showed that gravity is capable of changing the movement of light. In the 1960s, Penrose showed that black holes could appear generically, rather than as mathematical anomalies. Before this, experts — including Einstein — suggested that black holes don’t exist in physical reality.

Genzel and Ghez, meanwhile, were honored for their work using the world’s largest telescopes to discover a supermassive object in the galaxy, called Sagittarius A*, which could only possibly be a black hole. Imaging a black hole is extremely challenging because, with no light able to get out of them, they are rendered invisible to the naked eye. They can only be observed by using space telescopes with special tools that are able to see how stars in close proximity to a black hole act differently to other stars. When a black hole is near to a star, it creates a high-energy light that can be identified under certain conditions.

“There is a major problem in physics in that we have a wonderful theory about gravity, courtesy of Albert Einstein, and then a beautiful model of everything else in nature that is not related to gravity,” Ralph Scheicher, a researcher in the Department of Physics and Astronomy at Sweden’s Uppsala University, told Digital Trends, explaining why black holes are such a source of fascination. “Both work fantastically well in that they make predictions that match experiments, but they cannot both be right. They don’t fit with each other to form one unified Theory Of Everything. And so scientists look for modifications of either theory. Because black holes are such extreme objects with unimaginably strong gravitational fields, they are a perfect testing ground to observe and test predictions from [the] General Theory of Relativity.”

Genzel and Ghez will share half of the Nobel Prize, while Penrose receives the other half. Ghez is only the fourth woman in history to receive a Nobel Prize for physics since the prize was founded in 1901. Out of more than 200 laureates, only Marie Curie, Maria Goeppert-Mayer, and Donna Strickland are other female laureates to win the physics prize.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Biggest stellar black hole to date discovered in our galaxy
Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the orbits of both the star and the black hole, dubbed Gaia BH3, around their common centre of mass. This wobbling was measured over several years with the European Space Agency’s Gaia mission. Additional data from other telescopes, including ESO’s Very Large Telescope in Chile, confirmed that the mass of this black hole is 33 times that of our Sun. The chemical composition of the companion star suggests that the black hole was formed after the collapse of a massive star with very few heavy elements, or metals, as predicted by theory.

Black holes generally come in two sizes: big and really big. As they are so dense, they are measured in terms of mass rather than size, and astronomers call these two groups of stellar mass black holes (as in, equivalent to the mass of the sun) and supermassive black holes. Why there are hardly any intermediate-mass black holes is an ongoing question in astronomy research, and the most massive stellar mass black holes known in our galaxy tend to be up to 20 times the mass of the sun. Recently, though, astronomers have discovered a much larger stellar mass black hole that weighs 33 times the mass of the sun.

Not only is this new discovery the most massive stellar black hole discovered in our galaxy to date but it is also surprisingly close to us. Located just 2,000 light-years away, it is one of the closest known black holes to Earth.

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more
Nightmare black hole is the brightest object in the universe
Artist’s impression showing the record-breaking quasar J059-4351.

A  recently discovered monster black hole feasts on so much nearby material that it's the fastest-growing of its kind on record. The beefy black hole is devouring the equivalent mass of our sun every single day, making it a record-breaker in more ways than one.

“The incredible rate of growth also means a huge release of light and heat,” said lead researcher Christian Wolf of The Australian National University in a statement. “So, this is also the most luminous known object in the universe. It’s 500 trillion times brighter than our sun.”

Read more