Skip to main content

Baby black holes chirp as they’re born, just as Einstein predicted

Two Black Holes Merging
CalTech

Scientists have heard a “baby” black hole for the very first time, and the sounds it makes is just like a chirp.

Physicists from the Massachusetts Institute of Technology have found more proof that Albert Einstein’s theory of general relativity is correct, according to phys.org. Einstein predicted that the creation of a black hole would produce gravitational waves and sound like a sort of ringing. The pitch of the waves could signal the black hole’s potential mass and spin. 

Recommended Videos

The findings were published on Wednesday in Physical Review Letters. 

Please enable Javascript to view this content

“We all expect general relativity to be correct, but this is the first time we have confirmed it in this way,” Maximiliano Isi, a NASA Einstein Fellow in MIT’s Kavli Institute for Astrophysics and Space Research, told Phys.org. The experiment also tried to determine whether the black holes have “hair” — Einstein’s metaphor for mass, spin, and electric charge.

“This is the first experimental measurement that succeeds in directly testing the no-hair theorem. It doesn’t mean black holes couldn’t have hair. It means the picture of black holes with no hair lives for one more day.”

The black hole’s sound waves were detected by Laser Interferometer Gravitational-wave Observatory (LIGO) back in 2015. Scientists described the sound as “a waveform that quickly crescendoed before fading away,” or, something resembling the sound of a “chirp.” 

Scientists said that the loudest part of this “chirp” indicates the exact moment when the two black holes collided, creating an entirely new black hole. 

LIGO will continue to be used to detect these sounds, and scientists hope that they will be able to hear even more newborn black holes in our vast universe. 

Scientists are trying to learn more about the elusive and mysterious black holes that make up our universe. In April, astronomers were able to capture the first image of a black hole located in Messier 87, a galaxy 55 million light-years away. 

Closer to home is the black hole known as Sagittarius A*, which is in the center of our galaxy. This particular black hole has seen a hotbed of activity recently—emitting bright flares of energy and rapidly glowing 75 times brighter than normal for brief periods. In May, Astronomers from the University of California Los Angeles observed the flares of near-infrared wavelength light, which were the brightest ever seen. 

Allison Matyus
Former Digital Trends Contributor
Allison Matyus is a general news reporter at Digital Trends. She covers any and all tech news, including issues around social…
Scientists want your help to search for black holes
An illustration of a black hole.

Even though black holes swallow anything that comes near them -- even light -- they are still possible to locate by looking for signs of their effects. Black holes are extremely dense, so they have a lot of mass and a strong gravitational effect that can be observed from light-years away. But the universe is a big place, and researchers are hoping that the public can help them to identify more black holes in the name of scientific exploration.

A project called Black Hole Hunter invites members of the public to search through data collected by NASA's Transiting Exoplanet Survey Satellite (TESS) to look for signs of a black hole. Using a technique called gravitational microlensing, citizen scientists will look at how the brightness of light from various stars changes over time, looking for indications that a black hole could have passed in front of a star and bent the light coming from it. This should enable the project to identify black holes that would otherwise be invisible.

Read more
Record-breaking supermassive black hole is oldest even seen in X-rays
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra and Webb telescopes. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. This composite image shows the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra (purple) and infrared data from Webb (red, green, blue).

Astronomers recently discovered the most distant black hole ever observed in the X-ray wavelength, and it has some unusual properties that could help uncover the mysteries of how the largest black holes form.

Within the center of most galaxies lies a supermassive black hole, which is hundreds of thousands or even millions or billions of times the mass of our sun. These huge black holes are thought to be related to the way in which galaxies form, but this relationship isn't clear -- and how exactly supermassive black holes grow so massive is also an open question.

Read more
This peculiar galaxy has two supermassive black holes at its heart
The billion-year-old aftermath of a double spiral galaxy collision, at the heart of which is a pair of supermassive black holes.

As hard as it is to picture, with billions or even trillions of galaxies in the universe, entire galaxies can collide with each other. When that happens, one galaxy can be destroyed or the two can merge into one. But even in the case of galaxy mergers, the effects of the collision are often visible for billions of years afterward.

That's shown in a recent image taken by the Gemini South observatory, which shows the chaotic result of a merger between two spiral galaxies 1 billion years ago.

Read more