Skip to main content

Why are there no hot Neptunes? Atmospheric escape could be the culprit

A strange puzzle has been taxing astronomers for many years: where are the hot Neptunes? For unknown reasons, there is an notable absence of planets the size of Neptune which lie close to their respective stars. Scientists looking for exoplanets often find hot large planets the size of Jupiter and “super-Earth” hot planets which are slightly larger than our planet, but they almost never find hot planets that are Neptune-sized. New research from astronomers at the University of Geneva (UNIGE), Switzerland, may shed light on this oddity.

Using data from the Hubble Space Telescope, a few years ago the UNIGE astronomers discovered a warm Neptune-sized planet which was losing its atmosphere. The planet, GJ 436b, was shedding hydrogen from its atmosphere in a manner that suggested that the energy given out by nearby stars could effect the way that the planets evolve. And now the same team has discovered another warm Neptune, GJ 3470b, which is loosing its hydrogen 100 times faster than GJ 436b.

GJ 3470b is around 3.7 million kilometers from its star (around 2.3 million miles), which is just one-tenth of the distance between Mercury and the Sun. But the planet is loosing hydrogen at an even more rapid rate because its star is so young and energetic. The atmosphere of GJ 3470b is being lost fast enough that it will effect the way that the planet evolves, and the planet has already lost more than a third of its mass.

An artist’s illustration of hydrogen from the atmosphere of a Neptune-sized planet being pulled away by the energy of a nearby star. NASA, ESA, and D. Player (STScI)

This finding suggests that hot Neptunes do form close to stars, but that the planets are rapidly eroded down to smaller Earth-sized planets or are even degraded completely until all that remains is a rocky core. “Until now we were not sure of the role played by the evaporation of atmospheres in the formation of the desert,” said Dr. Vincent Bourrier, researcher in the Astronomy Department of the Faculty of Science of the UNIGE. “This could explain the abundance of hot super-Earths that have been discovered,” confirmed David Ehrenreich, associate professor in the astronomy department of the science faculty at UNIGE.

In order to confirm whether this theory is correct, the researchers need to observe more exoplanets. The challenge is that escaping hydrogen can only be observed if the planets are less than 150 light-years from Earth, so the team plans to look for evidence of atmospheric escape of heavier elements such as carbon.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb detects water vapor in rocky planet’s atmosphere — maybe
This artist concept represents the rocky exoplanet GJ 486 b, which orbits a red dwarf star that is only 26 light-years away in the constellation Virgo. By observing GJ 486 b transit in front of its star, astronomers sought signs of an atmosphere. They detected hints of water vapor. However, they caution that while this might be a sign of a planetary atmosphere, the water could be on the star itself – specifically, in cool starspots – and not from the planet at all.

The hunt for habitable exoplanets is on, and with the James Webb Space Telescope, we finally have a tool that can not only detect the presence of a planet in another star system, but can also look at the composition of its atmosphere. That ability will eventually allow us to find Earth-like planets wthat are good candidates for searching for life, but measuring the atmosphere of something so far away isn't an easy matter.

Webb recently saw exciting signs in the form of water vapor detected in the vicinity of the exoplanet GJ 486 b. That could indicate the presence of water in its atmosphere, but it could also be from another source: the outer layer of the planet's host star. Researchers are working through the data and hope to use another of Webb's instruments to make the final call.

Read more
Saturn’s rings are raining down particles on its atmosphere
This is a composite image showing the Saturn Lyman-alpha bulge, an emission from hydrogen which is a persistent and unexpected excess detected by three distinct NASA missions, namely Voyager 1, Cassini, and the Hubble Space Telescope between 1980 and 2017.

Saturn's famous rings don't just give the planet its distinctive look -- they also affect its weather. New research using the Hubble Space Telescope shows that the icy rings actually heat up Saturn's atmosphere, a phenomenon that could help us learn more about distant exoplanets as well.

Saturn's rings are made up of small particles of ice, forming ring shapes that reach 175,000 miles away from the planet. And it seems that it is these icy particles that are, somewhat counterintuitively, causing heating in the planet's atmosphere. Researchers looked at observations from Hubble as well as the Cassini and Voyager missions and saw more ultraviolet radiation than they expected in Saturn's upper atmosphere, indicating heating there.

Read more
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more